K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2017

Đáp án là D

+ Gọi O là giao điểm của AC,BD

MO \\ SB ⇒ SB \\ ACM

d  SB,ACM = d B,ACM = d D,ACM  .

+ Gọi I là trung điểm của AD ,

M I \ \ S A ⇒ M I ⊥ A B C D d     D , A C M     = 2 d     I , A C M  .

+ Trong ABCD: IK ⊥ AC  (với K  ∈ AC ).

+ Trong MIK: IH ⊥ MK  (với H ∈ MK ) (1)  .

+ Ta có: AC ⊥  MI ,AC ⊥  IK ⇒  AC ⊥  MIK

  ⇒  AC ⊥  IH (2) .

Từ 1 và 2 suy ra

IH ⊥  ACM ⇒  d  I ,ACM  = IH  .

+ Tính IH ?

- Trong tam giác vuông MIK. : I H = I M . I K I M 2 + I K 2 .

- Mặt khác: M I = S A 2 = a , I K = O D 2 = B D 4 = a 2 4

⇒ I H = a a 2 4 a 2 + a 2 8 = a 3

Vậy   d     S B , A C M = 2 a 3 .

Lời giải khác

28 tháng 12 2017

24 tháng 3 2019

21 tháng 5 2019

16 tháng 8 2017

Đáp án D.

Trong mp   A B C D gọi O là giao điểm của AC và BD.

Trong mặt phẳng S A C , qua O kẻ đường thẳng vuông góc với SC, cắt SC tại H.

Ta có   B D ⊥ A C B D ⊥ S A ⇒ B D ⊥ S A C ⇒ B D ⊥ O H ⇒ O H là đường vuông góc chung của hai đường thẳng SC và BD.

Lại có A C = a 2 ⇒ C S = S A 2 + A C 2 = a 2 + 2 a 2 = 3 a 2 = a 3 .

Hai tam giác COH và CSA đồng dạng với nhau. Suy ra 

O H S A = C O C S ⇒ O H = S A . C O C S = a . a 2 2 a 3 = a 6 6

Vậy khoảng cách giữa hai đường thẳng SC và BD bằng a 6 6 .

Chọn đáp án D.

7 tháng 6 2017

Đáp án D

26 tháng 3 2017

18 tháng 3 2019

Đáp án B

Ta có: B C ⊥ A B B C ⊥ S A ⇒ B C ⊥ M A  

Mặt khác A M ⊥ S B ⇒ A M ⊥ S B C ⇒ A N ⊥ S C , tương tự A N ⊥ S C  

Do đó S C ⊥ A M N , mặt khác ∆ S B C  vuông tại B suy ra  tan B S C ^ = B C S B = a S A 2 + A B 2 = 1 3

⇒ S B ; S C ^ = B S C ^ = 30 ° ⇒ S B ; A M N ^ = 60 ° .

23 tháng 10 2021

sao suy ra được góc giữa SB; AMN = 60 ạ?

 

22 tháng 1 2017

 

 

 

 

 

 

Ta có  S C D ∩ A B C D = C D

C D ⊥ S A C D ⊥ A C ⇒ C D ⊥ S A C ⇒ S C ⊥ C D

Vì  S C ⊥ C D , S C ⊂ S C D A C ⊥ C D , A C ⊂ A B C D

Nên  S C D , A B C D ^ = S C A ^ = 45 o

Dễ thấy ∆ S A C  vuông cân tại A

Suy ra SA = AC =  a 2

Lại có

  S M C D = 1 2 M C . M D = 1 2 a . a = a 2 2

Do đó

  V = V S . M C D = 1 3 S M C D S A = 1 3 . a 2 2 . a 2 = a 3 2 6

Ta có

  B D ∥ M N M N ⊂ S M N ⇒ B D ∥ S M N

Khi đó d( SM,BD ) = d( SM, (SMN) ) = d( D, (SMN) ) = d( A, ( SMN) )

Kẻ  A P ⊥ M N , P ∈ M N A H ⊥ S P , H ∈ S P

Suy ra  A H ⊥ S M N ⇒ d A S M N = A H

∆ S A P  vuông tại A có

1 A H 2 = 1 S A 2 + 1 A P 2 = 1 S A 2 + 1 A N 2 + 1 A M 2 = 1 2 a 2 + 1 a 2 4 + 1 a 2 = 11 2 a 2

Do đó d = d( SM, BD ) = AH =  a 22 11

Đáp án A

2 tháng 8 2018

Đáp án B.

Gọi O là tâm của hình vuông ABCD, nối S O ∩ B ' D ' = I . 

Và nối AI cát SC tại C’ suy ra mp (AB’D’) cắt SC tại C’.

Tam giác SAC vuông tại A, có S C 2 = S A 2 + A C 2 = 6 a 2 ⇒ S C = a 6 . 

Ta có B C ⊥ S A B ⇒ B C ⊥ A B '  và S B ⊥ A B ' ⇒ A B ' ⊥ S C . 

Tương tự A D ' ⊥ S C  suy ra  S C ⊥ ( A B ' D ' ) ≡ ( A B ' C ' D ' ) ⇒ S C ⊥ A C ' .

Mà S C ' . S C = S A 2 ⇒ S C ' S C = S A 2 S C 2 = 2 3  và S B ' S B = S A 2 S B 2 = 4 5 . 

Do đó  V S . A B ' C ' = 8 15 V S . A B C = 8 30 V S . A B C D  mà V S . A B C D = 1 3 . S A . S A B C D = 2 a 3 3 . 

Vậy thể tích cần tính là  V S . A B ' C ' D ' = 2 . V S . A B ' C ' = 16 a 3 45