K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

Đáp án B

Phương pháp giải:

Dựng hình, xác định góc và sử dụng hệ thức lượng trong tam giác để tính tang

Lời giải:

Vì SA  ⊥ (ABCD) => AC là hình chiếu của SC trên (ABCD)

Suy ra SC; (ABCD) = (SC; AC) = SCA = α(00; 900)

Tam giác SAC vuông tại A, có 

Vậy tan góc giữa đường thẳng SC và mặt phẳng (ABCD) là  1 2

30 tháng 12 2019

Đáp án A.

Phương pháp    

Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng đáy.

Cách giải

S C ; A B C D = S C ; A C = S C A

ABCD là hình vuông cạnh a  ⇒ A C = a 2

Xét tam giác vuông SAC có:

tan = S A A C = 2 a a 2 = 2

 

1 tháng 7 2019

Đáp án A

Ta có B C ⊥ A B B C ⊥ S A ⇒ B C ⊥ S A B  

Ta có S C ∩ S A B = S ; B C ⊥ S A B  

⇒ S C ; S A B ^ = S C , S B ^ = B S C ^  

Ta có S B = S A 2 + A B 2 = a 3  

Ta có tan B S C ^ = B C S B = a a 3 = 1 3 ⇒ B S C ^ = 30 ° .

16 tháng 8 2017

Đáp án D.

Trong mp   A B C D gọi O là giao điểm của AC và BD.

Trong mặt phẳng S A C , qua O kẻ đường thẳng vuông góc với SC, cắt SC tại H.

Ta có   B D ⊥ A C B D ⊥ S A ⇒ B D ⊥ S A C ⇒ B D ⊥ O H ⇒ O H là đường vuông góc chung của hai đường thẳng SC và BD.

Lại có A C = a 2 ⇒ C S = S A 2 + A C 2 = a 2 + 2 a 2 = 3 a 2 = a 3 .

Hai tam giác COH và CSA đồng dạng với nhau. Suy ra 

O H S A = C O C S ⇒ O H = S A . C O C S = a . a 2 2 a 3 = a 6 6

Vậy khoảng cách giữa hai đường thẳng SC và BD bằng a 6 6 .

Chọn đáp án D.

7 tháng 6 2017

Đáp án D

18 tháng 4 2017

Đáp án A

Ta có C B ⊥ A B C B ⊥ S A ⇒ C B ⊥ ( S A B )  

Do đó S C ; S A B ^ = C S B ^ = α  

⇒ S B = a tan α = 5 a 10 ⇒ S A = S B 2 - A B 2 = a 6 2

Ta có S O ; A B C D ^ = S O A ^ trong đó  t a n S C A ^ = S A O A = a 6 2 a 2 2 = 3 .

5 tháng 10 2019

Đáp án D

Dựng 

Dựng 

Khi đó Cx cắt AB tại E và AK tại I suy ra BI là đường trung bình của ∆AEK ( Do BD qua trung điểm O của AC)

Ta có: 

Do 

2 tháng 1 2017

Đáp án D

Phương pháp:

Gọi a’ là hình chiếu vuông góc của a trên mặt phẳng (P).

Góc giữa đường thẳng a và mặt phẳng (P) là góc giữa đường thẳng a và a’.

Cách giải:

Gọi H là trung điểm của AB => OH//AD

ABCD là hình vuông => AD ⊥ AB; OHAB

Mà OH ⊥ SA, (vì SA ⊥ (ABCD))

=> OH ⊥ (SAB)

=>SH là hình chiếu vuông góc của SO trên mặt phẳng (SAB)

=> (SO,(SAB)) = (SO,SH) = HSO

Ta  có:  OH là đường trung bình của tam giác ABD 

Tam giác SAH vuông tại A 

Tam giác SHO vuông tại H: 

29 tháng 12 2018

Đáp án B