K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: CD//AB

AB\(\subset\)(SAB)

CD không nằm trong mp(SAB)

Do đó: CD//(SAB)

b: Xét ΔSBD có

M,N lần lượt là trung điểm của SB,SD

=>MN là đường trung bình của ΔSBD

=>MN//BD

Xét (CMN) và (ABCD) có

\(C\in\left(CMN\right)\cap\left(ABCD\right)\)

MN//BD

Do đó: (CMN) giao (ABCD)=xy, xy đi qua C và xy//MN//BD

 

13 tháng 8 2021

undefined

a: \(I\in BD\subset\left(SBD\right)\)

\(I\in AC\subset\left(SAC\right)\)

Do đó: \(I\in\left(SBD\right)\cap\left(SAC\right)\)

mà \(S\in\left(SBD\right)\cap\left(SAC\right)\)

nên \(\left(SBD\right)\cap\left(SAC\right)=SI\)

b: Gọi K là giao của AB và CD

\(K\in AB\subset\left(SAB\right)\)

\(K\in CD\subset\left(SCD\right)\)

Do đó: \(K\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SK\)

c: AD//BC

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

Do đó: \(\left(SAD\right)\cap\left(SBC\right)=xy\), xy đi qua S và xy//AD//BC

7 tháng 11 2019

Giải bài 3 trang 77 sgk Hình học 11 | Để học tốt Toán 11

a) Tìm (SAD) ∩ (SBC)

Gọi E= AD ∩ BC. Ta có:

Giải bài 3 trang 77 sgk Hình học 11 | Để học tốt Toán 11

Do đó E ∈ (SAD) ∩ (SBC).

mà S ∈ (SAD) ∩ (SBC).

⇒ SE = (SAD) ∩ (SBC)

b) Tìm SD ∩ (AMN)

+ Tìm giao tuyến của (SAD) và (AMN) :

Trong mp (SBE), gọi F = MN ∩ SE :

F ∈ SE ⊂ (SAD) ⇒ F ∈ (SAD)

F ∈ MN ⊂ (AMN) ⇒ F ∈ (AMN)

⇒ F ∈ (SAD) ∩ (AMN)

⇒ AF = (SAD) ∩ (AMN).

+ Trong mp (SAD), gọi AF ∩ SD = P

⇒ P = SD ∩ (AMN).

c) Tìm thiết diện với mp(AMN):

(AMN) ∩ (SAB) = AM;

(AMN) ∩ (SBC) = MN;

(AMN) ∩ (SCD) = NP

(AMN) ∩ (SAD) = PA.

⇒ Thiết diện cần tìm là tứ giác AMNP.

a: \(E\in AC\subset\left(SAC\right)\)

\(E\in BD\subset\left(SBD\right)\)

Do đó: \(E\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SE\)

b: Gọi K là giao của AD với BC

\(K\in AD\subset\left(SAD\right)\)

\(K\in BC\subset\left(SBC\right)\)

Do đó: \(K\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(SK=\left(SAD\right)\cap\left(SBC\right)\)

c: AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó: \(\left(SAB\right)\cap\left(SCD\right)=xy\), xy đi qua S và xy//AB//CD

a: \(E\in AC\subset\left(SAC\right);E\in BD\subset\left(SBD\right)\)

=>\(E\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SE\)

b: Gọi K là giao của AD và BC

\(K\in AD\subset\left(SAD\right);K\in BC\subset\left(SBC\right)\)

=>\(K\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(\left(SAD\right)\cap\left(SBC\right)=SK\)

c: Xét (SAB) và (SCD) có

AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó: (SAB) giao (SCD)=xy; xy đi qua S và xy//AB//CD

12 tháng 12 2021

a, \(\left\{{}\begin{matrix}S\subset\left(SAC\right)\\O\subset\left(SAC\right)\end{matrix}\right.\Rightarrow SO\subset\left(SAC\right)\)

\(\left\{{}\begin{matrix}S\subset\left(SBD\right)\\O\subset\left(SBD\right)\end{matrix}\right.\Rightarrow SO\subset\left(SBD\right)\)

\(\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)

Gọi \(K=AD\cap BC\)

\(\Rightarrow\left\{{}\begin{matrix}S\subset\left(SAD\right)\\K\subset\left(SAD\right)\end{matrix}\right.\Rightarrow SK\subset\left(SAD\right)\)

\(\left\{{}\begin{matrix}S\subset\left(SBC\right)\\K\subset\left(SBC\right)\end{matrix}\right.\Rightarrow SK\subset\left(SBC\right)\)

\(\Rightarrow SK=\left(SAD\right)\cap\left(SBC\right)\)

12 tháng 12 2021

b, \(MN\) là đường trung bình.

\(\Rightarrow MN//AB\)

Lại có: \(CD//AB\)

\(\Rightarrow MN//CD\)

Mặt khác: \(MD=\dfrac{1}{2}AB=CD\Rightarrow MNCD\) là hình bình hành.

\(\Rightarrow MD//NC\)

11 tháng 12 2023

loading...  loading...  loading...  loading...  

11 tháng 12 2023

Tối nay anh giúp em 20 câu toán với nha anh em đang cần gấp ạ thanks anh rất nhiều luôn ạ

31 tháng 3 2017

a) (SAD) ∩ (SBC) = SE

b) Trong (SBE): MN ∩ SE = F

Trong (SAE): AF ∩ SD = P là điểm cần tìm

c) Thiết diện là tứ giác AMNP

TenAnh1 A = (-0.14, -7.4) A = (-0.14, -7.4) A = (-0.14, -7.4) B = (14.46, -7.36) B = (14.46, -7.36) B = (14.46, -7.36) C = (-3.74, -5.6) C = (-3.74, -5.6) C = (-3.74, -5.6) D = (11.62, -5.6) D = (11.62, -5.6) D = (11.62, -5.6)