K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

Đáp án C

Do (SAB) (ABCD) và (SAD) (ABCD) ta có SA (ABCD). Theo định lí ba đường vuông góc ta có BC SB.

Hạ BH SC tại H. Xét tam giác vuông SBC ta có:

Ta có mặt cầu S(B;r) cắt đường thẳng SC theo một dây cung có độ dài 2a khi và chỉ khi ta có

17 tháng 4 2019

Đáp án C

Từ giả thiết ta có SA  (ABCD), theo định lí ba đường vuông góc ta có tam giác SBC vuông tại B. Gọi S(B,r) là mặt cầu tâm B cắt SC theo một dây có độ dài 2a/3. Khi đó ta tính được:

27 tháng 10 2018

Đáp án C

Ta có mặt cầu S(A;r) cắt mặt phẳng (SBD) theo một đường tròn có bán kính bằng a khi và chỉ khi 

Hạ AK  BD tại K, hạ AH  SK tại H. Do BD  AK và BD  SA nên BD  (SAK), suy ra BD  AH. Mặt khác AH  SK nên ta có AH  (SBDB) hay d(A; (SBD)) = AH. Xét tam giác vuông SAK và tam giác vuông ABD ta có:

Khi đó ta có:

22 tháng 9 2019

12 tháng 8 2017

Đáp án D

Theo định lí ba đường vuông góc ta có hai tam giác SBC và SDC lần lượt vuông góc tại B, D. Gọi I là trung điểm của SC thì ta có: IA = IB = ID = SC/2 = IS = IC nên I là tâm mặt cầu ngoại tiếp hình chóp. Bán kính mặt cầu ngoại tiếp hình chóp là 

8 tháng 7 2017

Đáp án B

Ta có mặt cầu S(A ;r) tiếp xúc với đường thẳng SC khi và chỉ khi ta có r = d(A; SC).

Xét tam giác vuông ABC ta có AC = a 2 . Hạ AH  SC tại H. Xét tam giác vuông SAC ta có:

28 tháng 12 2017

 

23 tháng 4 2017

Đáp án D

Ta có mặt cầu S(A;r) tiếp xúc với mặt phẳng (SBC) khi và chỉ khi r = d(A; (SBC)).

Hạ AH  SB tại H. Do BC  AB và BC  SA nên BC  (SAB) , suy ra BC  AH.

Mặt khác AH  SB nên AH  (SBC) hay d(A; (SBC)) = AH Xét tam giác vuông SAB ta có:

7 tháng 10 2017
7 tháng 4 2018