Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi M,N,P lần lượt là giao điểm của OA, OB, OC với cạnh BC, CA, AB.
Vì O B ' / / S A ⇒ O A ' S A = O M A M (Định lí Thalet).
Tương tự, ta có O B ' S B = O N B N ' ; O C ' S C = O P P C ⇒ T = O M A M + O N B N + O P P C .
Với O là trọng tâm của tam giác ABC ⇒ M , N , P lần lượt là trung điểm của BC, CA, AB
⇒ O M A M = O N B N = O P C P = 1 3 . Vậy tổng tỉ số T = O A ' S A + O B ' S B + O C ' S C = 1.
Chú ý: Bản chất bài toán là yêu cầu chứng minh O M A M + O N B N + O P P C = 1. Tuy nhiên với tinh thần trắc nghiệm ta sẽ chuẩn hóa với O là trọng tâm tam giác ABC.
Chọn đáp án D
Ta có
Khi đó
Gọi I là trung điểm của AB.
Ta có SA=SB=AB=CA=CB=a nên tam giác SAB và tam giác ABC đều cạnh a.
Khi đó A B ⊥ S I , A B ⊥ C I và S I = C I = a 3 a
Mặt khác S I = C I = S C = a 3 2 nên ∆ S I C đều
Vậy góc giữa hai mặt phẳng (MNP) và (ABC) bằng 60 0
Chọn A
Chọn hệ trục tọa độ A(1;0;0), B(0;2;0), C(0;0;3).
Khi đó M thuộc mặt phẳng (ABC) thỏa mãn đề bài nên S M = 6 3 11
Đáp án D
Gọi d là tiếp tuyến của (C) tại điểm A(1:0).
Ta có: y ' = 3 x 2 − 6 x ⇒ y ' 1 = 3.
Suy ra: d : − 3 x − 1 + 0 ⇔ y = − 3 x + 3.
Chọn A