K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2019

23 tháng 7 2018

8 tháng 3 2017

29 tháng 11 2016

Dễ dàng chứng minh MN // BC

Xét \(\Delta SBC\) có MN // BC và MN đi qua trọng tâm G

\(\Rightarrow\) \(\begin{cases}SM=\frac{2}{3}SB\\SN=\frac{2}{3}SC\end{cases}\)

Sử dụng công thức tỉ lệ thể tích đố với 2 khối tứ diện S.AMN và S.ABC ta có

\(\frac{V_{S.AMN}}{V_{S.ABC}}=\frac{SA}{SA}.\frac{SM}{SB}.\frac{SN}{SC}=1.\frac{2}{3}.\frac{2}{3}=\frac{4}{9}\\ \Rightarrow V_{S.AMN}=\frac{4}{9}.V_{S.ABC}\)

Tính được \(V_{S.ABC}=\frac{1}{6}SA.AB.BC=\frac{a^3}{6}\)

\(\Rightarrow V_{S.AMN}=\frac{2a^3}{27}\)

23 tháng 7 2019

Chọn D.

Do ( α ) đi qua G ∈ (SBC), song song với BC nên ( α ) cắt mặt phẳng (SBC) theo giao tuyến MN qua G và song song với BC.

Do tam giác ABC vuông cân tại B, AC = a 2 nên 

Do SA ⊥ (ABC) nên 

1 tháng 5 2017

17 tháng 3 2018

19 tháng 3 2019

3 tháng 3 2018

Chọn B

Ta có B C ⊥ S M . Gọi H là hình chiếu vuông góc của A trên SM. Do

  và FE đi qua H.

Vậy H là trung điểm cạnh SM. Suy ra tam giác SAM vuông cân tại A

⇒ S A = a 3 2 V S A B C = 1 3 . a 3 2 . a 2 3 4 = a 3 8