Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qua C kẻ đường thẳng vuông góc AC cắt AB kéo dài tại D
\(\left\{{}\begin{matrix}SC\perp\left(ABC\right)\Rightarrow SC\perp CD\\CD\perp AC\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAC\right)\)
Kẻ \(CH\perp SB\Rightarrow CH\perp\left(SAB\right)\)
\(\Rightarrow\widehat{HCD}\) là góc giữa (SAB) và (SAC)
\(BC=\sqrt{AC^2-AB^2}=a\sqrt{2}\)
\(\dfrac{1}{CH^2}=\dfrac{1}{SC^2}+\dfrac{1}{BC^2}=\dfrac{13}{24a^2}\Rightarrow CH=\dfrac{2a\sqrt{78}}{13}\)
\(CD=AC.tanA=AC.\dfrac{BC}{AB}=a\sqrt{6}\)
\(sin\widehat{HCD}=\dfrac{DH}{CD}=\dfrac{\sqrt{CD^2-CH^2}}{CD}=...\)
- Gọi O là giao điểm của AC và BD.
- Kẻ: OI ⊥ AB, OH ⊥ SI.
+) Ta có:
+) Ta lại có:
- Do đó, góc giữa hai mặt phẳng (SAB) và (ABCD) bằng góc
+) Khi đó: CD // AB nên CD // ( SAB).
Suy ra:
- Ta có:
+) Tam giác ABC có BC = BA và nên tam giác ABC đêù
- Trong tam giác OIA có: