K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2018

Đáp án B

Trong mặt phẳng (ABCD) gọi I là giao điểm của MD và BC

Trong mặt phẳng (SBC) gọi K là giao điểm của IN và SB

Khi đó ta có: (MND) ∩  (SAB) = KM

                      (MND)  (ABCD) = MD

                      (MND)  (SBC) = KN

                      (MND)  (SCD) = ND

Vậy thiết diện của mặt phẳng (MND) với hình chóp là tứ giác NDMK.

Đáp án B

6 tháng 12 2017

14 tháng 10 2017

Do IJ là đường thẳng trung bình của hình thang ABCD nên IJ // AB. Hai mặt phẳng (GIJ) và (SAB) lần lượt chứa hai đường thẳng song song nên giao tuyến của chúng là đường thẳng đi qua G và song song với AB. Đường thẳng này cắt SA tại điểm M và cắt SB tại N. vậy thiết diện là hình thang MIJN, với M, N là giao điểm của đường thẳng đi qua G và song song với AB với hai đường thẳng SA, SB.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án B.

25 tháng 3 2017

Chọn A

3 tháng 7 2018

Giải bài tập Đại số 11 | Để học tốt Toán 11

+ Ta có: (α) // AB

⇒ giao tuyến (α) và (ABCD) là đường thẳng qua O và song song với AB.

Qua O kẻ MN // AB (M ∈ BC, N ∈ AD)

⇒ (α) ∩ (ABCD) = MN.

+ (α) // SC

⇒ giao tuyến của (α) và (SBC) là đường thẳng qua M và song song với SC.

Kẻ MQ // SC (Q ∈ SB).

+ (α) // AB

⇒ giao tuyến của (α) và (SAB) là đường thẳng qua Q và song song với AB.

Từ Q kẻ QP // AB (P ∈ SA).

⇒ (α) ∩ (SAD) = PN.

Vậy thiết diện của hình chóp cắt bởi (α) là tứ giác MNPQ.

Ta có: PQ// AB và NM // AB

=> PQ // NM

Do đó, tứ giác MNPQ là hình thang.

8 tháng 3 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi I, J lần lượt là trung điểm của BC, CD.

Ta có I J   / /   G 1 G 2  nên giao tuyến của hai mặt phẳng ( A G 1 G 2 ) và (ABCD) là đường thẳng d qua A và song song với IJ

Gọi O = IJ ∩ AC, K   =   G 1 G 2   ∩   S O , L = AK ∩ SC

L G 2  cắt SD tại R

L G 2  cắt SB tại Q

Ta có thiết diện là tứ giác AQLR.

30 tháng 5 2017

Đáp án D

Trong mặt phẳng (ABCD), kẻ đường thẳng d đi qua O và song song với AB

d cắt AD tại J

d cắt BC tại G

Trong mặt phẳng (SBC), kẻ đường thẳng  Gx đi qua G và song song với SC; đường thẳng này  cắt SB tại H

Trong mặt phẳng (SAB), kẻ đường thẳng y đi qua H và song song với AB

y cắt SA tại I

⇒ IHGJ là thiết diện cần tìm

Xét tứ giác IHGJ có: IH // JG ( // AB )

⇒ IHGJ là hình thang

NV
7 tháng 1 2021

Kéo dài AD và BC cắt nhau tại E

\(\Rightarrow SE=\left(SAD\right)\cap\left(SBC\right)\)

Trong mp (SBC), nối MN kéo dài cắt SE tại F

Trong mp (SAD), nối AF cắt SD tại I

\(\Rightarrow I=SD\cap\left(AMN\right)\)

Tứ giác AINM chính là thiết diện của (AMN) và chóp

MN là đường trung bình tam giác SCD \(\Rightarrow F\) là trung điểm SE

Mặt khác CD song song và bằng 1/2 AB \(\Rightarrow\) CD là đường trung bình tam giác ABE hay D là trung điểm AE

\(\Rightarrow\) I là trọng tâm tam giác SAE

\(\Rightarrow\dfrac{SI}{SD}=\dfrac{2}{3}\)