K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2018

Đáp án D

4 tháng 7 2017

BC vuông góc SA
BC vuông góc AB

=>BC vuông góc (ABS)

=>BC vuông góc AM

=>AM vuông góc (SBC)

=>AM vuông góc SC

mà AN vuông góc SC

nen SC vuông góc (AMN)

16 tháng 5 2023

cảm ơn bạn nhiều nhéee 😭

30 tháng 5 2022

Do SA ⊥ (ABCD) ⇒ \(\left\{{}\begin{matrix}SA\perp AB\\SA\perp AC\\SA\perp BC\end{matrix}\right.\)

Mà BC ⊥ AC ⇒ BC ⊥ (SAC) ⇒ BC ⊥ SC và BC ⊥ AH

Do BC ⊥ AH và AH ⊥ SC ⇒ AH ⊥ (SBC) ⇒ AH ⊥ KH ⇒ \(\widehat{AHK}=90^0\)

ΔSAB và ΔSAC vuông tại A

Mà AH và AK lần lượt là đường cao của ΔSAB và ΔSAC

⇒ \(\left\{{}\begin{matrix}SA^2=SK.SB\\SA^2=SH.SC\end{matrix}\right.\)

⇒ SK . SB = SH . SC

⇒ \(\dfrac{SK}{SH}=\dfrac{SC}{SB}\) ⇒ ΔSKH \(\sim\) ΔSCB ⇒ \(\widehat{SKH}=\widehat{SCB}=90^0\)

⇒ HK ⊥ SB

Mà AK⊥ SB

⇒ ((SAB),(SCB)) = (AK,AH) = \(\widehat{KAH}\) = 450 (đây là góc nhọn, vì \(\widehat{AHK}=90^0\))

⇒ ΔHAK vuông cân tại H ⇒ AK = \(\sqrt{2}AH\)

Ta có : \(\dfrac{S_{SAC}}{S_{SAB}}=\dfrac{\dfrac{1}{2}.AH.SC}{\dfrac{1}{2}AK.SB}=\dfrac{\dfrac{1}{2}.SA.AC}{\dfrac{1}{2}.SA.AB}\)

⇒ \(\dfrac{AH.SC}{AK.SB}=\dfrac{SA.AC}{SA.AB}\)

⇒ \(\dfrac{1}{\sqrt{2}}\) . \(\dfrac{SC}{SB}\) = \(\dfrac{AC}{AB}\). Mà AC = a và AB = 2a

⇒ \(\dfrac{1}{\sqrt{2}}\)\(\dfrac{SC}{SB}\) = \(\dfrac{1}{2}\) ⇒ \(\dfrac{SC^2}{SB^2}\) = \(\dfrac{1}{2}\) . Mà SB2 - SC2 = BC2 = 3a2

⇒ \(\left\{{}\begin{matrix}SC^2=3a^2\\SB^2=6a^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}SB=a\sqrt{6}\\SC=a\sqrt{3}\end{matrix}\right.\) ⇒ SA = a\(\sqrt{2}\)

Từ đó ta tính được SH = \(\dfrac{2a\sqrt{3}}{3}\) và SK = \(\dfrac{a\sqrt{6}}{3}\)

Gọi M là trung điểm của SB thì ta có CM // HK (cùng vuông góc với SB)

Khoảng cách từ HK đến AC bằng khoảng cách từ HK đến (AMC)

 

30 tháng 5 2022

bn ơi cho mình hỏi sao gọi M là tđ sb thì suy ra cm ss vs hk dc nhỉ

 

1 tháng 7 2017

18 tháng 5 2021

undefined