K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
29 tháng 3 2016
Gọi H là trung điểm của BC, suy ra \(SH\perp BC\). Mà (SBC) vuông góc với (ABC) theo giao tuyến BC, nên \(SH\perp\left(ABC\right)\)
Ta có : \(BC=a\Rightarrow SH=\frac{a\sqrt{3}}{2}\); \(AC=BC\sin30^0=\frac{a}{2}\)
\(AB=BC.\cos30^0=\frac{a\sqrt{3}}{2}\)
Do đó \(V_{S.ABC}=\frac{1}{6}SH.AB.AC=\frac{a^3}{16}\)
Tam giác ABC vuông tại A và H là trung điểm của BC nên \(HA=HB\). Mà \(SH\perp\left(ABC\right)\), suy ra \(SA=SB=a\). Gọi I là trung điểm của AB, suy ra \(SI\perp AB\)
Do đó \(SI=\sqrt{SB^2-\frac{AB^2}{4}}=\frac{a\sqrt{13}}{4}\)
Suy ra \(d\left(C;\left(SAB\right)\right)=\frac{3V_{S.ABC}}{S_{SAB}}=\frac{6V_{S.ABC}}{SI.AB}=\frac{a\sqrt{39}}{13}\)
Chọn D
Ta có tam giác ABC vuông tại A góc A B C ^ = 30 o và BC = a, suy ra AC = a 2 , AB = a 3 2
Lại có S A B ⊥ A B C C A ⊥ A B ⇒ A C ⊥ S A B , suy ra tam giác SAC vuông tại A.
Suy ra S A = S C 2 - A C 2 = a 2 - a 2 2 = a 3 2
Tam giác SAB có S A = a 3 2 , A B = a 3 2 , S B = a SB=a. Từ đó sử dụng công thức Hê-rông ta tính được S S A B = a 2 2 4 ⇒ S H = 2 S S A B A B = a 6 3 ⇒ B H = a 3 3 = 2 A B 3 .
Suy ra d(H,(SBC)) = 2 3 d A , S B C . Từ H kẻ H K ⊥ B C .
Kẻ H E ⊥ S K ⇒ H E ⊥ S B C
Ta dễ tính được H K = a 3 6 ⇒ d H , S B C = a 6 9 .
Vậy d A , S B C = 3 2 d H , S B C = 3 2 . a 6 9 = a 6 6 .