Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Phương pháp:
- Xác định góc giữa cạnh bên và mặt đáy.
- Tính diện tích đáy và chiều cao suy ra thể tích theo công thức
Chọn A.
Phương pháp:
- Xác định góc giữa cạnh bên và mặt đáy.
- Tính diện tích đáy và chiều cao suy ra thể tích theo công thức
V
=
1
3
S
h
Đáp án B
Ta có: 2 B I 2 = a 2 ⇒ B I = a 2 ; S I = B I tan 60 0 = a 3 2
Thể tích khối chóp S.ABCD là
V = 1 3 S I . S A B C D = 1 3 a 3 2 . a 2 = a 3 6 6
Đáp án C
V S . A B C D = 1 3 S . A . d t A B C D = 1 3 a 6 . a 2 = a 3 6 3
Gọi O là tâm của hình vuông ABCD
ABCD là hình vuông cạnh
tam giác SOC vuông tại O
Thể tích khối chóp S.ABCD là:
Chọn: D
Chọn B.
Phương pháp: Sử dụng định nghĩa hình chóp đều và góc giữa hai mặt phẳng..
Cách giải: Vì S.ABCD là hình chóp đều nên ABCD là hình vuông. Suy ra:
Đáp án A
Gọi O là tâm của mặt đáy.
Ta có:
Suy ra