K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2023

a) Kẻ \(C'H \bot OC\left( {H \in OC} \right)\)

 là hình chữ nhật \( \Rightarrow OH = O'C' = a,OO'\parallel C'H\)

Mà \(OO' \bot \left( {ABCDEF} \right)\)

\(\begin{array}{l} \Rightarrow C'H \bot \left( {ABCDEF} \right)\\ \Rightarrow \left( {CC',\left( {ABCDEF} \right)} \right) = \left( {CC',CH} \right) = \widehat {C'CH}\end{array}\)

\(\begin{array}{l}HC = OC - O'C' = \frac{a}{2},C'H = OO' = a\\ \Rightarrow \tan \widehat {C'CH} = \frac{{C'H}}{{HC}} = 2 \Rightarrow \widehat {C'CH} \approx 63,{4^ \circ }\end{array}\)

Vậy \(\left( {CC',\left( {ABCDEF} \right)} \right) \approx 63,{4^ \circ }\)

b) Gọi \(M,M'\) lần lượt là trung điểm của \(AB,A'B'\).

\( \Rightarrow OM \bot AB,O'M' \bot A'B'\)

\(ABB'A'\) là hình thang cân \( \Rightarrow MM' \bot AB,MM' \bot A'B'\)

\( \Rightarrow \left[ {O,AB,A'} \right] = \widehat {OMM'},\left[ {O',A'B',A} \right] = \widehat {O'M'M}\)

Kẻ \(M'K \bot OM\left( {K \in OM} \right)\)

\(OO'M'K\) là hình chữ nhật \( \Rightarrow OK = O'K' = \frac{{A'B'\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{4},OO' = M'K = a\)

\(\begin{array}{l}OM = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2},MK = OM - OK = \frac{{a\sqrt 3 }}{4}\\ \Rightarrow \tan \widehat {OMM'} = \frac{{M'K}}{{MK}} = \frac{4}{{\sqrt 3 }} \Rightarrow \widehat {OMM'} \approx 66,{6^ \circ }\\ \Rightarrow \widehat {O'M'M} = {180^ \circ } - \widehat {OMM'} = 113,{4^ \circ }\end{array}\)

AH
Akai Haruma
Giáo viên
28 tháng 1 2021

M là điểm nào thế bạn?

29 tháng 1 2021

Akai Haruma

M là trung điểm AC ạ

NV
8 tháng 3 2022

Do \(\left\{{}\begin{matrix}AA'\perp\left(ABCD\right)\Rightarrow AA'\perp AD\\AD\perp AC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AD\perp\left(AA'C\right)\)

Mà \(AD||A'D'\Rightarrow A'D'\perp\left(AA'C\right)\)

Lại có \(AA'||CC'\Rightarrow C'\in\left(AA'C\right)\Rightarrow A'D'\perp AC'\) (1)

\(\left\{{}\begin{matrix}AA'\perp AC\\AA'=AC\end{matrix}\right.\) \(\Rightarrow\) tứ giác AA'C'C là hình vuông

\(\Rightarrow AC'\perp A'C\) (2)

(1);(2) \(\Rightarrow AC'\perp\left(A'D'C\right)\)

NV
8 tháng 3 2022

undefined

NV
14 tháng 3 2022

a. Gọi cạnh lập phương là a

Ta có: \(AC=\sqrt{AB^2+AD^2}=a\sqrt{2}\) 

\(AH=\sqrt{AD^2+DH^2}=a\sqrt{2}\)

\(CH=\sqrt{CD^2+DH^2}=a\sqrt{2}\)

\(\Rightarrow\Delta ACH\) đều \(\Rightarrow\widehat{CAH}=60^0\)

b.

Do \(B'C||A'D\Rightarrow\) góc giữa A'B và B'C bằng góc giữa A'B và A'D

Tương tự câu a, ta có tam giác A'BD đều \(\Rightarrow\widehat{BA'D}=60^0\)

c.

Do IJ song song SB (đường trung bình), CD song song AB \(\Rightarrow\) góc giữa IJ và CD bằng góc giữa SB và AB

Tam giác SAB đều (các cạnh bằng a) \(\Rightarrow\widehat{SBA}=60^0\)

d.

\(\overrightarrow{EG}=\overrightarrow{AC}\Rightarrow\widehat{\left(\overrightarrow{AF};\overrightarrow{EG}\right)=\widehat{\left(\overrightarrow{AF};\overrightarrow{AC}\right)}=\widehat{FAC}=60^0}\) do tam giác FAC đều 

14 tháng 3 2022

Thầy ơi thầy giúp em dạng này với ạ, em sắp thi rồi ạ :'((  https://hoc24.vn/cau-hoi/a-co-bao-nhieu-gia-tri-cua-a-de-limlimits-xrightarrowinftyleftsqrtx2-ax2021-x1righta2b-tim-a-de-ham-so-fxleftbeginmatrixdfracx31x1khixne-13akhix-1end.5243579572507