Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình
CM: a) Ta có : góc BAD + góc DAC = 900 + góc DAC = góc BAC (1)
Mà góc BAC = 900 + BCA (2)
Từ (1) và (2) suy ra góc DAC = góc DCA
=> t/giác ADC là t/giác cân tại D
Ta lại có: góc BAD + góc DAE = 1800 (kề bù)
=> góc DAE = 1800 - góc BAD = 1800 - 900 = 900
Mà góc CAE = 900 - góc DAC (3)
góc ACE = 900 - góc BCA (4)
Và góc DAC = góc DCA (cmt) (5)
Từ (3);(4);(5) suy ra góc EAC = góc ACE
=> t/giác AEC là t/giác cân tại E
b) Ta có: t/giác ADC cân tại D(cmt) => AD = DC
t/giác AEC cân tại E (Cmt) => EA = EC
Xét t/giác ADE và t/giác CDE
có AE = CE (cmt)
AD = DC (Cmt)
DE :chung
=> t/giác ADE = t/giác CDE (c.c.c)
=> góc ADE = góc EDC (hai góc tương ứng)
Xét t/giác ADN và t/giác CDN
có góc DAN = góc DCN (cm câu a)
DA = DC (Cmt)
góc ADN = góc CDN (cmt)
=> t/giác ADN = t/giác CDN (g.c.g)
=> AN = CN (hai cạnh tương ứng) => N là trung điểm của AC
=> góc DNA = góc DNC (hai góc tương ứng)
Mà góc DNA + góc DNC = 1800 (kề bù)
=> 2 ^DNA = 1800
=> ^DNA = 1800 : 2
=> góc DNA = 900
c) Ta có: góc ADC là góc ngoài của t/giác ADB
=> góc ADC = góc DAB + góc B = 900 + 300 = 1200
Xét t/giác ADC có góc ADC + góc DCA + góc CAD = 1800 (tổng 3 góc của 1 t/giác)
=> 2.^ DCA = 1800 - góc ADC = 1800 - 1200 = 600
=> góc DCA = 600 : 2 = 300
=> góc DCA = góc B = 300
=> t/giác BAC là t/giác cân tại A
Vì AH ko bằng cạnh AB và HC ko bằng cạnh BC nên ta ko thể kết luận tam giác AHC = tam giác BAC theo trường hợp cạnh - cạnh - cạnh
Xét hai tam giác ΔAHC và ΔBAC có:
-AC chung
-Góc BAC = góc AHC
=>Ko đủ dữ kiện để kết luận hai tam giác trên bằng nhau
Kẻ DM ∟ AC sao cho DM = AB.
Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c)
=> ^DCM = ^AEB và BE = MC (1)
Δ BMD = Δ BED (c - g - c)
=> ^BMD = ^BED và BM = BE (2)
(1) và (2) cho:
^DCM = ^BMD và CM = MB
=> Δ BMC cân tại M
mà ^DMC + ^DCM = 90o (Δ MDC vuông)
=> ^DMC + ^BMD = 90o
=> Δ BMC vuông cân.
=> BCM = 45o
Mà ^ACB + ^DCM = ^BCM
=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt))
Cách 2:
Đặt AB = a
ta có: BD = a√2
Do DE/DB = DB/DC = 1/√2
=> Δ DBC đồng dạng Δ DEB (c - g - c)
=> ^DBC = ^DEB
Δ BDC có ^ADB góc ngoài
=> ^ADB = ^DCB + ^DBC
hay ^ACB + ^AEB = 45o
Cách 3
ta có:
tanAEB = AB/AE = 1/2
tanACB = AB/AC = 1/3
tan (AEB + ACB) = (tanAEB + tanACB)/(1 - tanAEB.tanACB)
= (1/2 + 1/3)/(1 - 1/2.1/3) = 1 = tan45o
Vậy ^ACB + ^AEB = 45o
Kẻ DM ∟ AC sao cho DM = AB.
Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c)
=> ^DCM = ^AEB và BE = MC (1)
Δ BMD = Δ BED (c - g - c)
=> ^BMD = ^BED và BM = BE (2)
(1) và (2) cho:
^DCM = ^BMD và CM = MB
=> Δ BMC cân tại M
mà ^DMC + ^DCM = 90o (Δ MDC vuông)
=> ^DMC + ^BMD = 90o
=> Δ BMC vuông cân.
=> BCM = 45o
Mà ^ACB + ^DCM = ^BCM
=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt))
A B C D E F
a) Ez bạn tự làm nha, mình làm sơ sơ cũng 3-4 cách rồi.:)
b) Tam giác ABC cân tại A có đường p/g góc A xuất phát từ đỉnh đồng thời là đường trung trực nên \(AD\perp BC\). và BD = CD = BC/2
Xét tam giác ABD vuông tại D (chứng minh trên), theo định lí Pythagoras:
\(AB^2=BD^2+DA^2\Leftrightarrow10^2=\frac{BC^2}{4}+DA^2\)
\(=36+DA^2\Rightarrow AD=8\) (cm) (khúc này có tính nhầm gì thì tự sửa lại nha!)
Theo đề bài ta có AB = AC = 10 < BC = 12
Hay AC < BC. Theo quan hệ giữa góc và cạnh đối diện trong tam giác ABC ta có \(\widehat{ABC}< \widehat{BAC}\) (Cái khúc này không chắc, sai thì thôi)
c) Hướng dẫn:
\(\Delta\)EDB = \(\Delta\)FDC (cạnh huyền - góc nhọn)
Suy ra EB = FC. Từ đó suy ra AE = AF.
Suy ra tam giác AEF cân tại A suy ra \(\widehat{AEF}=\frac{180^o-\widehat{A}}{2}\) (1)
Mặt khác tam giác ABC cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\) (2)
Từ (1) và (2) suy ra đpcm