K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 7 2021

\(SI=\left(SIC\right)\cap\left(SID\right)\) mà (SIC) và (SID) cùng vuông góc đáy \(\Rightarrow SI\perp\left(ABCD\right)\)

Trên DC lấy M sao cho \(CM=2BM\Rightarrow IM||BC\) hay \(IM\perp DC\)

\(\Rightarrow CD\perp\left(SIM\right)\) \(\Rightarrow\widehat{SMI}\) là góc giữa (SCD) và (ABCD) hay \(\widehat{SMI}=60^0\)

\(\Rightarrow SI=IM.tan60^0=a\sqrt{3}\)

Trong tam giác vuông SIM kẻ \(IH\perp SM\Rightarrow IH\perp\left(SCD\right)\Rightarrow IH=d\left(I;\left(SCD\right)\right)\)

\(\dfrac{1}{IH^2}=\dfrac{1}{SI^2}+\dfrac{1}{IM^2}=\dfrac{4}{3a^2}\Rightarrow IH=\dfrac{a\sqrt{3}}{2}\)

NV
20 tháng 4 2023

Lần lượt kẻ \(AE\perp SB\)  (1) và \(AF\perp SD\)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow BC\perp AE\) (2)

(1);(2) \(\Rightarrow AE\perp\left(SBC\right)\)

Hoàn toàn tương tự ta có \(AF\perp\left(SCD\right)\)

\(\Rightarrow\) Góc giữa (SBC) và (SCD) là góc giữa AE và AF

Cũng từ \(BC\perp\left(SAB\right)\) mà \(BC=\left(SBC\right)\cap\left(ABCD\right)\Rightarrow\widehat{SBA}\) là góc giữa (SBCD) và đáy

\(\Rightarrow\widehat{SBA}=60^0\Rightarrow SA=AB.tan60^0=a\sqrt{3}\)

Hệ thức lượng: \(\dfrac{1}{AE^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}\Rightarrow AE=\dfrac{a\sqrt{3}}{2}\)

\(\dfrac{1}{AF^2}=\dfrac{1}{SA^2}+\dfrac{1}{AD^2}\Rightarrow AF=\dfrac{a\sqrt{6}}{2}\)

\(SB=\sqrt{SA^2+AB^2}=2a\) ; \(SD=a\sqrt{6}\)

\(BD=\sqrt{AB^2+AD^2}=2a\Rightarrow cos\widehat{BSD}=\dfrac{SB^2+SD^2-BD^2}{2SB.SD}=\dfrac{\sqrt{6}}{4}\)

\(SE=\sqrt{SA^2-AE^2}=\dfrac{3a}{2}\) ; \(SF=\sqrt{SA^2-AF^2}=\dfrac{a\sqrt{6}}{2}\)

\(\Rightarrow EF=\sqrt{SE^2+SF^2-2SE.SF.cos\widehat{BSD}}=\dfrac{a\sqrt{6}}{2}\)

\(\Rightarrow cos\widehat{EAF}=\dfrac{AE^2+AF^2-EF^2}{2AE.AF}=\dfrac{\sqrt{2}}{4}\)

NV
20 tháng 4 2023

loading...

NV
8 tháng 5 2023

a.

\(\left\{{}\begin{matrix}SO\perp\left(ABCD\right)\Rightarrow SO\perp AC\\AC\perp BD\left(\text{hai đường chéo hình vuông}\right)\end{matrix}\right.\) 

\(\Rightarrow AC\perp\left(SBD\right)\)

Mà \(AC\in\left(SAC\right)\Rightarrow\left(SAC\right)\perp\left(SBD\right)\)

b.

\(SO\perp\left(ABCD\right)\Rightarrow OC\) là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCO}\) là góc giữa SC và (ABCD)

\(OC=\dfrac{1}{2}AC=a\sqrt{2}\)

\(tan\widehat{SCO}=\dfrac{SO}{OC}=\sqrt{3}\Rightarrow\widehat{SCO}=60^0\)

c.

Gọi E là trung điểm CD, từ O kẻ \(OF\perp SE\)

OE là đường trung bình tam giác BCD \(\Rightarrow\left\{{}\begin{matrix}OE=\dfrac{1}{2}BC=a\\OE||BC\Rightarrow OE\perp CD\end{matrix}\right.\)

\(\Rightarrow CD\perp\left(SOE\right)\)\(\Rightarrow CD\perp OF\)

\(\Rightarrow OF\perp\left(SCD\right)\Rightarrow OF=d\left(O;\left(SCD\right)\right)\)

Do \(\left\{{}\begin{matrix}AO\cap\left(SCD\right)=C\\AC=2OC\end{matrix}\right.\) \(\Rightarrow d\left(AB;\left(SCD\right)\right)=d\left(A;\left(SCD\right)\right)=2d\left(O;\left(SCD\right)\right)=2OF\)

Hệ thức lượng: \(OF=\dfrac{OE.SO}{\sqrt{OE^2+SO^2}}=...\)

NV
8 tháng 5 2023

loading...

1: AC=căn a^2+a^2=a*căn 2

=>SC=căn SA^2+AC^2=a*căn 8

SB=căn AB^2+SA^2=a*căn 7

Vì SB^2+BC^2=SC^2

nên ΔSBC vuông tại B

=>SB vuông góc BC

NV
19 tháng 3 2021

Trong mp (SBC), kẻ \(BH\perp SC\Rightarrow BH\perp\left(SCD\right)\)

\(\Rightarrow\widehat{BGH}\) là góc giữa BG và (SCD)

\(BD=AB\sqrt{2}=a\sqrt{2}\)

\(\dfrac{1}{BG^2}=\dfrac{1}{SB^2}+\dfrac{1}{BD^2}=\dfrac{1}{3a^2}+\dfrac{1}{2a^2}=\dfrac{5}{6a^2}\Rightarrow BG=\dfrac{a\sqrt{30}}{5}\)

\(\dfrac{1}{BH^2}=\dfrac{1}{SB^2}+\dfrac{1}{BC^2}=\dfrac{1}{3a^2}+\dfrac{1}{a^2}=\dfrac{4}{3a^2}\Rightarrow BH=\dfrac{a\sqrt{3}}{2}\)

\(sin\widehat{BGH}=\dfrac{BH}{BG}=\dfrac{\sqrt{10}}{4}\)

NV
21 tháng 4 2021

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\Rightarrow\left(SCD\right)\perp\left(SAD\right)\)

\(AC=\sqrt{AD^2+CD^2}=a\sqrt{2}\)

\(BC=\sqrt{BE^2+CE^2}=a\sqrt{2}\)

\(\Rightarrow AC^2+BC^2=AB^2\Rightarrow AC\perp BC\)

\(\Rightarrow BC\perp\left(SAC\right)\Rightarrow BC\perp AH\Rightarrow AH\perp\left(SBC\right)\)

b.

\(CD\perp\left(SAD\right)\Rightarrow\widehat{SDA}\) là góc giữa (SCD) và (ABCD) 

\(\Rightarrow\widehat{SDA}=30^0\Rightarrow SA=AD.tan30^0=\dfrac{a\sqrt{3}}{3}\)

Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AD\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AD\perp\left(SAB\right)\)

Qua S kẻ đường thẳng d song song AD

Do \(AD||CE\) \(\Rightarrow\) d là giao tuyến (SAD) và (SCE)

Mà \(d\perp\left(SAB\right)\Rightarrow\widehat{ASE}\) là góc giữa (SAD) và (SCE)

\(AE=\dfrac{AB}{2}=a\)

\(tan\widehat{ASE}=\dfrac{AE}{SA}=\sqrt{3}\Rightarrow\widehat{ASE}=60^0\)

21 tháng 4 2021

\(tan\widehat{ASE}=\sqrt{3}\) chứ aj?