K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2021

a: Xét tứ giác BMDN có 

DM//BN

DM=BN

Do đó: BMDN là hình bình hành

16 tháng 12 2016

ta có MD//BN ( AB//CD)

MD=BN(AD=BC,MD=AM,BN=NC)

=> BMDN là hình bình hành 

25 tháng 11 2022

a: Xét tứ giác BMDN có

BN//DM

BN=DM

Do đó: BMDN là hình bình hành

=>BM//DN

Xét ΔADF có

M là trung điểm của AD

ME//DF
Do đó: E là trung điểm của AF

=>AE=EF

Xét ΔCEB có

N là trung điểm của CB

NF//EB

DO đó: F là trung điểm của CE

=>AE=EF=FC

b: AE+EO=AO

CF+FO=CO

mà AO=CO; AE=CF

nên EO=FO

=>O là trung điểm của EF

BMDN là hình bình hành

nên BD cắt MN tại trung điểm của mỗi đường

=>O là trung điểm của MN

Xét tứ giác MENF có

O làtrung điểm chung của MN và FE

nên MENF là hình bình hành

a: Xét tứ giác BMDN có 

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

22 tháng 12 2023

loading... a) Do M là trung điểm của AB (gt)

⇒ BM = AM = AB : 2

Do N là trung điểm của CD (gt)

⇒ CN = DN = CD : 2

Do ABCD là hình bình hành (gt)

⇒ AB = CD và AB // CD

⇒ BM = AB : 2 = CD : 2 = DN

Do AB // CD (cmt)

⇒ BM // DN

Tứ giác BMDN có:

BM // DN (cmt)

BM = DN (cmt)

⇒ BMDN là hình bình hành

b) Do BMDN là hình bình hành (cmt)

⇒ BN // DM

⇒ ∠AMD = ∠MBN (đồng vị) (1)

Do AB // CD (cmt)

⇒ ∠MBN = ∠BNC (so le trong) (2)

Từ (1) và (2) ⇒ ∠AMD = ∠BNC

c) Do ABCD là hình bình hành

I là trung điểm của AC (gt)

⇒ I là trung điểm của BD

Do BMDN là hình bình hành (cmt)

I là trung điểm của BD (cmt)

⇒ I là trung điểm của MN

⇒ M, I, N thẳng hàng

13 tháng 6 2019

a,Hình bình hành ABCD có AB=CD

⇒12AB=AM=12CD=CN⇒12AB=AM=12CD=CN

Mặt khác, M,N lần lượt là trung điểm của AB và CD

Do đó, AM//CN

Tứ giác AMCN có cặp cạnh đối vừa song song vừa bằng nhau nên là hình bình hành (đpcm)

b, Tứ giác AMCN là hình bình hành

⇒⇒M1ˆ=N1ˆM1^=N1^ (Hai góc đối của hình bình hành AMCN)

⇒⇒M2ˆ=N2ˆM2^=N2^ (Do M1ˆM1^ và M2ˆM2^ là hai góc kề bù; N1ˆN1^ và N2ˆN2^ là hai góc kề bù)

Mặt khác, ABCD là hình bình hành nên AB//CD ⇒⇒B1ˆ=D1ˆB1^=D1^

ΔEDNΔEDN và ΔKBMΔKBM có:

M2ˆ=N2ˆM2^=N2^

DN=BMDN=BM

B1ˆ=D1ˆB1^=D1^

⇒ΔEDN=ΔKBM(g.c.g)⇒ΔEDN=ΔKBM(g.c.g)

⇒ED=KB⇒ED=KB (đpcm)

c, Gọi O là giao điểm của AC và BD.

ABCD là hình bình hành

⇒OA=OC⇒OA=OC

ΔCABΔCAB có:

MA=MBMA=MB

OA=OCOA=OC

MC cắt OB tại K

⇒⇒ K là trọng tâm của ΔCABΔCAB

Mặt khác, I là trung điểm của BC

⇒⇒ IA,OB,MC đồng quy tại K

Hay AK đi qua trung điểm I của BC (đpcm)

13 tháng 6 2019

A B M D C N E K

Mk vẽ ko đc đẹp lắm , xl nha . Chỗ AC bạn kẻ thêm 1 nét đứt và tên là O nha