Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi góc DAH = góc HAO =góc OAB = x
Xét tam giác OAD cân tại A(....)
=> góc ADH = 90 độ - x (1)
=> góc DOC = 180 độ - 2x (góc ngoài)
_góc ACD=x ( soletrong ...)
Xét tam giác ODC có
góc ODC = 180 độ - góc ACD - góc DOC
=180 độ - 180 độ + 2x -x
= x
=> góc ODC = x (2)
từ (1) và (2) => góc ADC = 90 độ - x + x =90 độ
=> H.B.Hành có 1 góc vg=> đó là Hình Chữ Nhật (dpcm)
Lời giải:
Xét tam giác ADH và AOH có:
\(\widehat{DAH}=\widehat{OAH}\) (gt)
\(\widehat{AHD}=\widehat{AHO}=90^0\)
AH chung
\(\Rightarrow \triangle ADH=\triangle AOH(g.c.g)\) (1)
\(\Rightarrow AD=AO\Rightarrow \frac{AD}{AO}=1\)
Xét tam giác ADH và AOK có:
\(\widehat{AHD}=\widehat{AKO}=90^0\)
\(\widehat{DAH}=\widehat{OAB}=\widehat{OAK}\) (gt)
\(\Rightarrow \triangle ADH\sim \triangle AOK(g.g)\Rightarrow \frac{AH}{AK}=\frac{DH}{OK}=\frac{AD}{AO}=1\Rightarrow AH=AK;DH=OK\)
Vì AO là phân giác của \(\widehat{HAB}\) nên theo tính chất đường phân giác thì:
\(\frac{AH}{AB}=\frac{OH}{OB}\)
Trong đó \(OH=DH\) (do (1)) nên \(OH=\frac{1}{2}OD\). Mà \(OD=OB\) theo tính chất hình bình hành
\(\Rightarrow \frac{AH}{AB}=\frac{OH}{OB}=\frac{1}{2}\)
Mà \(AH=AK\Rightarrow AK=\frac{1}{2}AB\Rightarrow AK=KB\)
Tam giác AOB có OK vừa là đường cao vừa là đường trung tuyến nên tam giác AOB cân tại O. Do đó OA=OB hay AC=BD nên ABCD là hình chữ nhật (đpcm).
câu 1
gọi góc DAH = góc HAO =góc OAB = x
Xét tam giác OAD cân tại A(....)
=> góc ADH = 90 độ - x (1)
=> góc DOC = 180 độ - 2x (góc ngoài)
_góc ACD=x ( soletrong ...)
Xét tam giác ODC có
góc ODC = 180 độ - góc ACD - góc DOC
=180 độ - 180 độ + 2x -x
= x
=> góc ODC = x (2)
từ (1) và (2) => góc ADC = 90 độ - x + x =90 độ
=> H.B.Hành có 1 góc vg^ => đó là H.C.Nhật (dpcm)
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
AB//CD
=>góc OAB=góc OCD
mà góc OAB=góc ODC
nên góc ODC=góc OCD
=>OC=OD
=>AC=BD
Xét hình bình hành ABCD có AC=BD
nên ABCD là hình chữ nhật