K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2018

Dựng BG ⊥ AC.

Xét ΔBGA và ΔCEA, ta có:

∠ (BGA) =  ∠ (CEA) =  90 0

∠ A chung

BGA đồng dạng CEA(g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

AB.AE = AC.AG (1)

Xét  △ BGC và  △ CFA, ta có:

∠ (BGC) =  ∠ (CFA) = 90 0

∠ (BCG) =  ∠ (CAF) (so le trong vì AD //BC)

△ BGC đồng dạng △ CFA (g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ⇒ BC.AF = AC.CG

Mà BC = AD (tính chất hình bình hành)

Suy ra: AD.AF = AC.CG (2)

Cộng từng vế đẳng thức (1) và (2) ta có:

AB.AE + AD.AF = AC.AG + AC.CG

AB.AE + AD.AF= AC(AG + CG)

Mà AG + CG = AC nên AB.AE + AD.AF =  A C 2

a: Xét tứ giác AKCI có

AK//CI

AI//CK

Do đó: AKCI là hình bình hành

24 tháng 10 2021

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Suy ra: AF//CE

25 tháng 10 2021

Xét hình tứ giác đấy có:

`=>AE//// CF`

`AE=CF`

Có bốn cạnh như trên suy ra là hình bình hành.

`=>` `AF////CE`

 

3 tháng 11 2021

undefined