K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của BC

Do đó: EF là đường trung bình

=>EF//AC và EF=AC/2(1)

Xét ΔCDA có 

G là trung điểm của CD

H là trung điểm của DA

Do đó: GH là đường trung bình

=>GH//AC và GH=AC/2(2)

Từ (1) và (2) suy ra EF//GH và EF=GH

hay EFGH là hình bình hành

b: EF=GH=AC/2=3(cm)

FG=EH=BD/2=4(cm)

7 tháng 12 2015

a)      nối A với C ,  B với D được:

EF // AC ( đường trung bình của tam giác BAC)

HG // AC ( "         "          "          "        "          "       ) suy ra EF // AC  do cùng // AC

HE // DB ( đường trung bình tam giác ADB  )

FG // DB ( "     "           "         "         "         "        ) suy ra HE // FG  do cùng // với DB

Xét tứ giác EFGH có 2 cặp cạnh đối song song  nên EFGH là hình bình hành

b)  EFGH là hình ....

Thoi , suy ra EH = GH  nên AC=BD  ( do là đường trung bình của hai tam giác ADB,ADC)

vì AC = BD nên ABCD là hình thang cân

Chữ nhật, suy ra HE vuông góc với HG  nên AC vuông góc với  BD

Hình vuông   ,   kết hợp 2 yếu tố của 2 hình trên được AC=BD và AC vuông góc với BD.

Tích nha☺

 

18 tháng 12 2020

a) Mình đề nghị bạn giở SGK toán 8 tập 1 trang 93 bài 7 hình học chương I nhé.

b) Ta có: \(AC\perp BD\)

mà HE//BD=>\(HE\perp AC\)

mà AC//HG

=> \(\widehat{EHG}=90^o\)

Chứng minh tương tự với 2 trong 3 góc còn lại của tứ giác EFGH.

=> Nếu AC vuông góc với BD thì EFHG là hình chữ nhật.

Đây là hướng làm nhé, còn bạn hiếu sao thì trình bày theo ý bạn nhé:vv

4 tháng 4 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có:  ∠ (AOB) và ∠ (COD) đối đỉnh nên E, O, G thẳng hàng

∠ (BOC) và  ∠ (AOD) đối đỉnh nên F, O, H thẳng hàng

Xét ∆ BEO và  ∆ BFO:

(EBO) = (FBO) (tính chất hình thoi)

OB cạnh chung

∠ (EOB) =  ∠ (FOB) = 45 0  (gt)

Do đó:  ∆ BEO =  ∆ BFO (g.c.g)

⇒ OE = OF (1)

Xét  ∆ BEO và  ∆ DGO:

∠ (EBO) = (GDO) (so le trong)

OB = OD(tính chất hình thoi)

∠ (EOB) = (GOD) (đối đỉnh)

Do đó:  ∆ BEO =  ∆ DGO (g.c.g)

⇒ OE = OG (2)

Xét AEO và AHO:

∠ (EAO) = (HAO) (tính chất hình thoi)

OA cạnh chung

∠ (EOA) =  ∠ (HOA) =  45 0  (gt)

Do đó:  ∆ AEO = AHO (g.c.g)

⇒ OE = OH (3)

Từ (1), (2) và (3) suy ra: OE = OF = OG = OH hay EG = FH

nên tứ giác EFGH là hình chữ nhật (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường và bằng nhau)

OE ⊥ OF (tính chất tia phân giác của hai góc kề bù)

hay EG ⊥ FH

Vậy hình chữ nhật EFGH là hình vuông.

Xét ΔABD có

E,H lần lượt là trung điểm của AB,AD

=>EH là đường trung bình

=>EH//BD và EH=BD/2

Xét ΔBCD có

G,F lần lượt là trung điểm của CD,CB

=>GF là đường trung bình

=>GF//BD và GF=BD/2

=>EH//GF và EH=GF

=>EFGH là hình bình hành

20 tháng 8 2023

Hình vẽ đâu b

30 tháng 6 2017

Hình vuông

25 tháng 7 2017

Hình vuông