K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

Vì ABCD là hình bình hành

=> + AB = DC

       AB // DC  => góc ABE = góc FCD  ( sole trong )

+     AD= BC

     AD // BC

+) Xét \(\Delta AEB\)và \(\Delta CFD\)có :

\(AB=CD\left(cmt\right)\)

\(\widehat{AEB}=\widehat{CFD}=90^o\)(gt )

\(\widehat{ABE}=\widehat{FCD}\)(cmt)

Do đó : tam giác vuông AEB = tam giác vuông CFD ( cạnh huyền - góc nhọn )

\(\Rightarrow AE=FC\)( cặp cạnh tương ứng )               (1)

+)  vÌ \(\hept{\begin{cases}AE\perp DB\\FC\perp DB\end{cases}}\)

=> AE // FC  (2)

Từ (1) và (2)

=>  AECF là hình bình hành ( đpcm )

    

9 tháng 7 2018

A B C D E F

Hình hơi xấu nha ^^

12 tháng 8 2017

bạn đã tìm ra lời giải  chưa chỉ mình với nhanh nhanh nha mình sắp nộp bài rồi cảm ơn

a: AE\(\perp\)BD

CF\(\perp\)BD

Do đó: AE//CF

Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

=>AE=CF

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: AE//CF

E\(\in\)AH

F\(\in\)CK

Do đó: AH//CK

AB//CD

K\(\in\)AB

H\(\in\)CD

Do đó: AK//CH

Xét tứ giác AHCK có

AH//CK

AK//CH

Do đó: AHCK là hình bình hành

=>AC cắt HK tại trung điểm của mỗi đường(1)

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,HK,BD đồng quy

17 tháng 9 2020

a) ABCD là hình bình hành => AD=BC, AD//BC

--->Dễ dàng có được \(\Delta AED=\Delta CFB\left(c.g.c\right)\Rightarrow AE=CF\)

Mà AE//CF (cùng vuông góc BD) => AECF là hình bình hành.

b) AHDK không thể là hình bình hành nha --> phải là AHCK

Chứng minh: AH//CK (cùng vuông góc BD)

CH//AK (vì ABCD là hình bình hành)

=> AHCK là hình bình hành

Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB(Hai cạnh đối của hình bình hành ABCD)

\(\widehat{D}=\widehat{B}\)(Hai góc đối của hình bình hành ABCD)

Do đó: ΔAED=ΔCFB(cạnh huyền-góc nhọn)

Suy ra: AE=CF(Hai cạnh tương ứng) và ED=FB(hai cạnh tương ứng)

Ta có: ED+EC=DC(E nằm giữa D và C)

FB+FA=AB(F nằm giữa A và B)

mà AB=DC(Hai cạnh đối của hình bình hành ABCD)

và ED=FB(cmt)

nên EC=FA

Xét tứ giác ECFA có 

EC=FA(cmt)

EA=CF(cmt)

Do đó: ECFA là hình bình hành(Dấu hiệu nhận biết hình bình hành)