K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2015

(Tự vẽ hình nhen)

a,Ta có ABCD là hbh => gADC=gABC(1)

BM là phân giác gABC(gt)=>gABM=1/2gABC(2)

DN là phân giác gADC(gt)=>gMDN=1/2gADC(3)

Từ(1),(2) và (3)=> gNDM=gNBM

Mặt khác NB//DM(t/c hbh)=> BMDN là hbh

b,Gọi O là giao điểm của AC và BD(4)

=>O là trung điểm của BD(t/c hbh)

Ta lại có BMDN là hbh(câu a)=>O cũng là trung điểm của MN(5)

Từ (4) và (5)=>AC,BD,MN đồng quy tại O

a: Xét ΔDAM và ΔBCN có 

\(\widehat{D}=\widehat{B}\)

DA=BC

\(\widehat{DAM}=\widehat{BCN}\)

Do đó: ΔDAM=ΔBCN

Suy ra: AM=CN và DM=BN

Ta có: AN+NB=AB

CM+MD=CD

mà AB=CD

và DM=BN

nên AN=CM

Xét tứ giác AMCN có 

AN//CM

AM//CN

Do đó: AMCN là hình bình hành

24 tháng 7 2023

tại sao DAM lại bằng BCN ạ?

 

a: AE\(\perp\)BD

CF\(\perp\)BD

Do đó: AE//CF

Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

=>AE=CF

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: AE//CF

E\(\in\)AH

F\(\in\)CK

Do đó: AH//CK

AB//CD

K\(\in\)AB

H\(\in\)CD

Do đó: AK//CH

Xét tứ giác AHCK có

AH//CK

AK//CH

Do đó: AHCK là hình bình hành

=>AC cắt HK tại trung điểm của mỗi đường(1)

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,HK,BD đồng quy

7 tháng 5 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: ∠ A = C (tính chất hình bình hành)

∠ A 2  = 1/2  ∠ A ( Vì AM là tia phân giác của  ∠ (BAD) )

∠ C 2  = 1/2  ∠ C ( Vì CN là tia phân giác của  ∠ (BCD) )

Suy ra:  ∠ A 2  =  ∠ C 2

Do ABCD là hình bình hành nên AB // CD (gt)

Hay AN // CM (1)

Mà  ∠ N 1  =  ∠ C 2 (so le trong)

Suy ra:  ∠ A 2 =  ∠ N 1

⇒ AM // CN (vì có cặp góc ở vị trí đồng vị bằng nhau) (2)

Từ (1) và (2) suy ra tứ giác AMCN là hình bình hành.

22 tháng 10 2021

ABCD là hình bình hành

DAB=BCD,B=D

mà DAM=MAB=DAB/2(AM tia pg)

     BCN=NCD=BCD/2(NC tia pg)

=>NAM=NCM,NCB=DAM

lại có ANC=B+NCB(góc ngoài tgBCN)

          AMC=D+DAM(góc ngoài tgBCN)

=>ANC=AMC

xét tứ giác AMCN

NAM=NCM,ANC=AMC

=>AMCN là hình bình hành

a: góc ABM=góc MBC

góc MBC=góc AMB

=>góc ABM=góc AMB

=>ΔABM cân tại A

b: Xét ΔBAM và ΔDCN có

góc ABM=góc CDN

BA=DC

góc A=góc C

Do đó: ΔBAM=ΔDCN

=>AM=CN

AM+MD=AD

BN+NC=BC

mà AD=BC và AM=CN

nên MD=BN

Xét tứ giác MDNB có

MD//NB

MD=NB

Do đó: MDNB là hình bình hành

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Vì \(DE\), \(BF\) là phân giác (gt)

Suy ra \(\widehat {{\rm{ADE}}} = \widehat {{\rm{EDC}}} = \frac{{\widehat {ADC}}}{2}\); \(\widehat {{\rm{EBF}}} = \widehat {{\rm{CBF}}} = \frac{{\widehat {ABC}}}{2}\) (1)

Vì \(ABCD\) là hình bình hành (gt)

Suy ra \(AB\) // \(CD\) và \(\widehat {ADC} = \widehat {ABC}\) (2)

Suy ra \(\widehat {{\rm{AED}}} = \widehat {{\rm{EDC}}}\) (so le trong) (3)

Từ (1), (2), (3) suy ra \(\widehat {AED} = \widehat {ABF}\)

Mà hai góc ở vị trí đồng vị

Suy ra \(DE\) // \(BF\)

b) Xét tứ giác \(DEBF\) ta có:

\(DE\) // \(BF\) (cmt)

\(BE\) // \(DF\) (do \(AB\) // \(CD\))

Suy ra \(DEBF\) là hình bình hành