Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhá!!!!
a) ABCD là hình bình hành=>góc ADC=góc ABC => góc MBN=góc MDN
Mà: góc MBN= góc BNC( so le trong) => góc BNC=góc MDN => DM//BN
b) Từ phần a ta có:
Xét DMNB có DM//BN
BM//DN (do AB//CD)
=> DMNB là hbh
c) Ta có:
góc AMD= góc MDC(so le trong) => góc ADM= góc AMD=> Tam giác AMD cân tại A
Mà: AH là đường phân giác=> AH là đường cao<=> AH vuông góc với DM (1)
=>AG vuông góc với BN ( do DM//BN) (2)
Tương tự, ta cũng chứng minh được tam giác BNC cân tại C
Mà: CF là đường PG=> CF vuông góc với BN (3)
Từ (1); (2); (3) => HEFG là hcn do có 3 góc vuông
a: Xét ΔADM và ΔCBN có
\(\widehat{ADM}=\widehat{CBN}\)
AD=CB
\(\widehat{A}=\widehat{C}\)
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN
a) Ta có :
\(\hept{\begin{cases}NE\perp DM\\MG\perp BN\end{cases}}\)
\(\Rightarrow DM//BN\)
\(\Rightarrow\widehat{EDN}=\widehat{GBM}\)( sole trong) (1)
Mà \(\widehat{ADE}=\widehat{EDN}\)(2)
Từ (1) và(2)
\(\Rightarrow\widehat{ADE}=\widehat{GBM}\)
Lại có : \(DM//BN\left(cmt\right)\)
\(\Rightarrow\widehat{AMD}=\widehat{GBM}\)
\(\Rightarrow\widehat{ADM}=\widehat{AMD}\)
=> Tam giác ADM cân tại A
\(\Rightarrow AM=AD\left(dpcm\right)\)
b) P/s: phải là chứng minh tam giác MGB và tam giác NED chớ không phải tam giác MHB bạn ơi .
giải : Xét \(\Delta MGB\)và \(\Delta NED\)ta có :
\(MB=DN\)
\(\widehat{E}=\widehat{G}=90^o\)
\(\widehat{EDN}=\widehat{GBM}\)( câu a )
=> \(\Delta MGB=\Delta NED\)( cạnh huyền - góc nhọn )
c) Vì ABCD là hình bình hành
\(\Rightarrow BM//DN\)( vì AB // CD ) (1)
Lại có : \(DM//BN\)( câu a ) (2)
Từ (1)và(2)
=> MBND là hình bình hành (đpcm)
a: Xét ΔADM và ΔCBN có
\(\widehat{ADM}=\widehat{CBN}\)
AD=CB
\(\widehat{A}=\widehat{C}\)
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN
(d) qua A(5; 6) : y = mx - 5m + 6 (1)
(C) : (x - 1)² + (y - 2)² = 1 (2)
Thay y từ (1) vào (2) ta có phương trình hoành độ giao điểm của (d) và (C)
(x - 1)² + (mx - 5m + 4)² = 1
Khai triển ra pt bậc 2 : (m² + 1)x² - 2(5m² - 4m + 1)x + 25m² - 40m + 17 = 0 (*)
Để (d) tiếp xúc (C) thì (*) phải có nghiệm kép
∆' = (5m² - 4m + 1)² - (m² + 1)(25m² - 40m + 17) = - 4(3m² - 8m + 4) = 4(m - 2)(2 - 3m) = 0 => m = 3/2; m = 2
KL : Có 2 đường thẳng cần tìm
(d1) : y = (3/2)(x - 1)
(d2) : y = 2x - 4
∆ ∠ ∡ √ ∛ ∜ x² ⁻¹ ∫ π × ∵ ∴ | | , ⊥,∈∝ ≤ ≥− ± , ÷ ° ≠ → ∞, ≡ , ≅ , ∑,∪,¼ , ½ , ¾ , ≈ , [-b ± √(b² - 4ac) ] / 2a Σ Φ Ω α β γ δ ε η θ λ μ π ρ σ τ φ ω ё й½ ⅓ ⅔ ¼ ⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ ⁿ ₁ ₂ ₃₄₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ∊ ∧ ∏ ∑ ∠ ,∫ ∫ ψ ω Π∮ ∯ ∰ ∇ ∂ • ⇒ ♠ ★
a: Xét ΔDAM có \(\widehat{DAM}=\widehat{DMA}\left(=\widehat{BAM}\right)\)
nên ΔDAM cân tại D
hay DA=DM
Xét ΔBNC có \(\widehat{BNC}=\widehat{BCN}\)
nên ΔBNC cân tại B
Suy ra: BN=BC