K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là giao điểm của hai đường chéo AC và BD.

Xét tứ giác AECF:

AB // CD (gt)

⇒ AE // CF

AE = CF (gt)

Suy ra: Tứ giác AECF là hình bình hành ( vì có một cặp cạnh đối song song và bằng nhau)

⇒ AC và EF cắt nhau tại trung điểm mỗi đường

OA = OC ( tính chất hình bình hành) ⇒ EF đi qua O

Vậy AC, BD, EF đồng quy tại O.

6 tháng 9 2017

 Hình bình hành ABCD có :

AC cắt BD tại trung điểm của AC và BD   ( 1 )

Hình bình hành EBFD có :

EF cắt BD tại trung điểm của EF và BD   ( 2 )

\(\Rightarrow\)Từ ( 1 ) và ( 2 ) suy ra AC ; BD ; EF đồng quy

1 tháng 12 2015

dễ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bạn

16 tháng 11 2021

a: Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

21 tháng 8 2019

A B C D E F M N O

Gọi O là giao điểm 2 đường chéo AC và BD

Xét \(\Delta\)AOE và \(\Delta\)COF có:AO=OC ( vì ABCD là hình bình hành ),CF=AE ( giả thiết ),^AOE=^COF ( đối đỉnh )

a

Vì vậy \(\Delta AOE=\Delta COF\left(c.g.c\right)\Rightarrow OE=OF\left(1\right)\)

Xét \(\Delta\)BON và \(\Delta\)DOM có:OB=OD ( vì ABCD là hình bình hành ),MD=BN ( vì AM=CN ),^MOD=^NOB ( đối đỉnh )

Vì vậy \(\Delta BON=\Delta COM\left(c.g.c\right)\Rightarrow OM=ON\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) suy ra tứ giác EMFN là hình bình hành.

b

Hình bình hành EMFN có O là giao điểm của 2 đường chéo,tứ giác ABCD có O là giao điểm của 2 đường chéo.

=> ĐPCM

P/S:Mik ko chắc lắm đâu nha,nhất là câu b ý:p