Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : AB=CD (T/c HBH) mà K là TĐ của AB (gt) và I là TĐ của DC (gt)
Suy ra AK=KB=IC=ID (1) mà K thuộc AB, I thuộc DC nên AK// IC(2)
từ (1) (2) suy ra AKIC là HBH (dhnb) suy ra AI//KC(t/c)(đpcm) mà M thuộc AI, N thuộc KC suy ra AM//KN và MI//NC
b) xét tam giác DNC có: I là TĐ của DC và MI//NC(cmt) suy ra M là TĐ của DN(3)
CMTT suy ra N là TĐ của MB(4)
TỪ (3)(4) suy ra DM=MN=NB(ddpcm)
Theo câu a, AICK là hình bình hành
⇒ AK//CI. Khi đó , ta có:
Mặt khác, ta lại có: AI = IB, CK = KD theo giải thiết:
ÁP dụng định lý đường trung bình vào tam giác ABM, DCN ta có:
⇒ DM = MN = NB
a) + K là trung điểm của AB ⇒ AK = AB/2.
+ I là trung điểm của CD ⇒ CI = CD/2.
+ ABCD là hình bình hành
⇒ AB // CD hay AK // CI
và AB = CD ⇒ AB/2 = CD/2 hay AK = CI
+ Tứ giác AKCI có AK // CI và AK = CI
⇒ AKCI là hình bình hành.
b) + AKCI là hình bình hành
⇒ AI//KC hay MI//NC.
ΔDNC có: DI = IC, IM // NC ⇒ DM = MN (1)
+ AI // KC hay KN//AM
ΔBAM có: AK = KB, KN//AM ⇒ MN = NB (2)
Từ (1) và (2) suy ra DM = MN = NB.
a: Xét tứ giác AKCI có
AK//CI
AK=CI
Do đó:AKCI là hình bình hành
Suy ra: AI//CK
Giải :
a) + K là trung điểm của AB ⇒ AK = \(\frac{AB}{2}\).
+ I là trung điểm của CD ⇒ CI = \(\frac{CD}{2}\).
+ ABCD là hình bình hành
⇒ AB // CD hay AK // CI
và AB = CD ⇒ AB/2 = \(\frac{CD}{2}\) hay AK = CI
+ Tứ giác AKCI có AK // CI và AK = CI
⇒ AKCI là hình bình hành.
b) + AKCI là hình bình hành
⇒ AI // KC hay \(\frac{MI}{NC}\).
\(a)\)
\(K\)là trung điểm \(AB\)\(\Rightarrow AK=\frac{AB}{2}\)
\(I\)là trung điểm \(CD\)\(\Rightarrow CI=\frac{CD}{2}\)
Mà theo đề ra: \(ABCD\)là hình bình hành
\(\Rightarrow AB//CD\)hay \(AK//CI\)
\(\Rightarrow AB=CD\Rightarrow\frac{AB}{2}=\frac{CD}{2}\)hay \(AK=CI\)
Tứ giác \(AKCI\)có \(AK//CI\)\(;\)\(AK=CI\)
\(\Rightarrow AKCI\)là hình bình hành
\(b)\)
Theo phần a), ta có: \(AKCI\)là hình bình hành
\(\Rightarrow AI//KC\)hay \(MI//NC\)
a: Xét tứ giác AICK có
AK//CI
AK=CI
Do đó: AICK là hình bình hành
a ) AK = 1/2 AB
CI = 1/2 CD
Mà AB //= CD nên AK //= CI suy ra
AKCI - hình bình hành
Nên AI // CK
b ) Xét t/g DNC có :
I là trung điểm CD mà IM // NC
=> IM là đường trung bình của t/g DNC
=> MD = MN ( 1 )
Xét t/g ABM có :
K là trung điểm AB mà KN // AM
=> KN là đường trung bình của t/g ABM ( 2 )
Từ ( 1 ) ; ( 2 ) suy ra DM = MN = NB
a)
Vì \(DC=AB\)(vì ABCD là hình bình hành) (1)
mà \(IC=ID\) (2)
\(KA=KB\)(3)
Từ (1) ;/ (2) và (3)
\(\Rightarrow IC=KB\)
Vì ABCD là hình b/hành
\(\Rightarrow AD=BC\)
và \(\widehat{ADI}=\widehat{CBK}\)
Xét \(\Delta ADI\)và \(\Delta CBK\)có :
\(AD=BC\left(cmt\right)\)
\(\widehat{ADI}=\widehat{CBK}\left(cmt\right)\)
\(DI=BK\)(cmt )
Do đó : \(\Delta ADI=\Delta CBK\)(c-g-c)
\(\Rightarrow\hept{\begin{cases}AI=CK\\\widehat{DAI}=\widehat{BCK}\end{cases}}\)
Mà \(\widehat{DAB}=\widehat{DCB}\)( vì ABCD Là hình bình hành )
\(\Rightarrow\widehat{IAB}=\widehat{ICK}\)
Mà hai góc này ở vị trí so le
\(\Rightarrow AI//CK\)
b) Xét \(\Delta MAB\)có :
\(KA=KB\left(gt\right)\)
và \(AM//KN\)(vì AI // KC )
=> MN= NB ( 1)
Xét \(\Delta CDN\)có :
\(ID=IC\left(gt\right)\)
và \(IM//CN\)(vì IA // CK )
=> DM = MN (2)
Từ (1) và (2)
\(\Rightarrow DM=MN=NB\)( đpcm)