K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

a) AD // BC (gt)

b) Xét ΔAMB và ΔNAD có:

∠BAM = ∠ AND (so le trong, AB // CD)

∠ABM = ∠ADN (góc đối của hình bình hành)

⇒ ΔAMB ∼ ΔNAD (g.g)

c) ΔAMB ∼ ΔNAD (cmt)

Do đó: CN = DN – DC = 12 – 8 = 4 (cm)

d) Do AB //CD nên theo hệ quả định lí Ta-lét, ta có

Tương tự, do AD // BM nên

Từ (1) ⇒AB // CD  AB // ND

⇒A2^=N1^ (5)

Từ (1) ⇒ABC^=CDA^ (2 góc đối của hình bình hành) (6)

Từ (5), (6) ⇒ΔAMB∼ΔAND (G-G)

8 tháng 4 2022

a) Xét ΔABD vàΔ HAD có:

     \(\widehat{DAB}\) =\(\widehat{AHB}\)= 90o( gt)

         \(\widehat{D}\) chung

⇒Δ ABD ∼ ΔHAD(g-g)

b) Áp dụng định lí Py-ta-go vào Δ ABD vuông tại A ta có:

   BD=\(\sqrt{AD^2+AB^2}\)=\(\sqrt{3^2+4^2}\)=\(\sqrt{25}\)=5(cm)

Theo câu a ta có:Δ ABD ∼ ΔHAD

\(\dfrac{BD}{AD}\)=\(\dfrac{AD}{HD}\)hay \(\dfrac{5}{3}\)=\(\dfrac{3}{HD}\)⇒HD=\(\dfrac{3.3}{5}\)=1,8 (cm)

 

 

a: Xét ΔABD vuông tại A và ΔHAD vuông tại H có

góc ADH chung

Do đó: ΔABD\(\sim\)ΔHAD

b: \(BD=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(HD=\dfrac{AD^2}{BD}=1.8\left(cm\right)\)