Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
\(BE=EC=\dfrac{BC}{2}\)
\(AF=FD=\dfrac{AD}{2}\)
\(AB=CD=\dfrac{AD}{2}\)
Do đó: BE=EC=AF=FD=AB=CD
Xét tứ giác ABEF có
BE//AF
BE=AF
Do đó: ABEF là hình bình hành
Hình bình hành ABEF có BE=BA
nên ABEF là hình thoi
=>BF\(\perp\)AE
b: Xét ΔABF có AB=AF và \(\widehat{BAF}=60^0\)
nên ΔABF đều
=>\(\widehat{AFB}=60^0\)
\(\widehat{BFD}+\widehat{AFB}=180^0\)(hai góc kề bù)
=>\(\widehat{BFD}+60^0=180^0\)
=>\(\widehat{BFD}=120^0=\widehat{CDF}\)
Xét tứ giác BFDC có FD//BC
nên BCDF là hình thang
Hình thang BCDF có \(\widehat{BFD}=\widehat{CDF}\)
nên BCDF là hình thang cân
c:
ΔABF đều
=>BF=AF
=>\(BF=\dfrac{AD}{2}\)
Xét ΔBAD có
BF là đường trung tuyến
\(BF=\dfrac{AD}{2}\)
Do đó: ΔBAD vuông tại B
=>AB\(\perp\)BD
AB=CD
AB=BM
Do đó: CD=BM
Xét tứ giác BMCD có
BM//CD
BM=CD
Do đó: BMCD là hình bình hành
Hình bình hành BMCD có \(\widehat{MBD}=90^0\)
nên BMCD là hình chữ nhật
=>BC cắt MD tại trung điểm của mỗi đường
mà E là trung điểm của BC
nên E là trung điểm của MD
=>M,E,D thẳng hàng
a: Xét tứ giác MCDN có
MC//DN
MC=DN
MC=CD
=>MCDN là hình thoi
b: Xét ΔCMD có CM=CD và góc C=60 độ(=góc BAD)
nên ΔCMD đều
=>góc CMD=60 độ
góc BMD+góc CMD=180 độ(kề bù)
=>góc BMD=180-60=120 độ
=>góc BMD=góc B
Xét tứ giác ABMD có
BM//AD
góc ABM=góc BMD
=>ABMD là hình thang cân
=>AM=BD
c: Xét ΔKAD có BM//AD
nên BM/AD=KM/KD=KB/KA
=>KM/KD=KB/KA=1/2
=>Mlà trung điểm của KD, B là trung điểm của KA
Xét ΔKAD có
AM,DB,KN là trung tuyến
=>AM,DB,KN đồng quy