K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác MCDN có

MC//DN

MC=DN

MC=CD

=>MCDN là hình thoi

b: Xét ΔCMD có CM=CD và góc C=60 độ(=góc BAD)

nên ΔCMD đều

=>góc CMD=60 độ

góc BMD+góc CMD=180 độ(kề bù)

=>góc BMD=180-60=120 độ

=>góc BMD=góc B

Xét tứ giác ABMD có

BM//AD

góc ABM=góc BMD

=>ABMD là hình thang cân

=>AM=BD

c: Xét ΔKAD có BM//AD

nên BM/AD=KM/KD=KB/KA

=>KM/KD=KB/KA=1/2

=>Mlà trung điểm của KD, B là trung điểm của KA

Xét ΔKAD có

AM,DB,KN là trung tuyến

=>AM,DB,KN đồng quy

27 tháng 9 2018
29 tháng 10 2023

a:

\(BE=EC=\dfrac{BC}{2}\)

\(AF=FD=\dfrac{AD}{2}\)
\(AB=CD=\dfrac{AD}{2}\)

Do đó: BE=EC=AF=FD=AB=CD

Xét tứ giác ABEF có

BE//AF

BE=AF

Do đó: ABEF là hình bình hành

Hình bình hành ABEF có BE=BA

nên ABEF là hình thoi

=>BF\(\perp\)AE
b: Xét ΔABF có AB=AF và \(\widehat{BAF}=60^0\)

nên ΔABF đều

=>\(\widehat{AFB}=60^0\)

\(\widehat{BFD}+\widehat{AFB}=180^0\)(hai góc kề bù)

=>\(\widehat{BFD}+60^0=180^0\)

=>\(\widehat{BFD}=120^0=\widehat{CDF}\)

Xét tứ giác BFDC có FD//BC

nên BCDF là hình thang

Hình thang BCDF có \(\widehat{BFD}=\widehat{CDF}\)

nên BCDF là hình thang cân

c:

ΔABF đều

=>BF=AF

=>\(BF=\dfrac{AD}{2}\)

Xét ΔBAD có

BF là đường trung tuyến

\(BF=\dfrac{AD}{2}\)

Do đó: ΔBAD vuông tại B

=>AB\(\perp\)BD

AB=CD

AB=BM

Do đó: CD=BM

Xét tứ giác BMCD có

BM//CD

BM=CD

Do đó: BMCD là hình bình hành

Hình bình hành BMCD có \(\widehat{MBD}=90^0\)

nên BMCD là hình chữ nhật

=>BC cắt MD tại trung điểm của mỗi đường

mà E là trung điểm của BC

nên E là trung điểm của MD

=>M,E,D thẳng hàng