K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a:

BC=20cm

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/12=CD/16

=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)

Do đó: BD=60/7(cm); CD=80/7(cm)

b: Xét ΔABC có DE//AB

nên DE/AB=CD/BC

=>DE/12=4/7

hay DE=48/7(cm)

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: BC=25cm

AH=15*20/25=12cm

HB=20^2/25=16cm

HC=25-16=9cm

a: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/DC=AB/AC=2/3

=>3DB-2DC=0

mà DB+DC=18

nên DB=7,2cm; DC=10,8cm

b: Xét ΔBDH vuông tại H và ΔCDK vuông tại K có

góc BDH=góc CDK

=>ΔBDH đồng dạng với ΔCDK

=>BH/CK=BD/CD=2/3

 

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{B}\) chung

Do đó: ΔABC∼ΔHBA(g-g)

Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BC\cdot BH\)(đpcm)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: \(AB^2=BC\cdot BH\)(cmt)

nên \(BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=\dfrac{36}{10}=3.6\left(cm\right)\)

Vậy: BH=3,6cm

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=BC^2-AB^2=13^2-12^2=169-144=25\)

=>\(AC=\sqrt{25}=5\left(cm\right)\)

b: XétΔBAC có BD là phân giác

nên \(\dfrac{AD}{BA}=\dfrac{CD}{BC}\)

=>\(\dfrac{AD}{12}=\dfrac{CD}{13}\)

D nằm giữa A và C

=>AD+DC=AC

=>AD+DC=5(cm)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{12}=\dfrac{CD}{13}=\dfrac{AD+CD}{12+13}=\dfrac{5}{25}=0,2\)

=>\(AD=2\cdot12=2,4\left(cm\right);CD=2\cdot13=2,6\left(cm\right)\)

c: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

=>DA=DH

mà DA=2,4(cm)

nên DH=2,4(cm)

 

11 tháng 5 2015

a) Áp dụng định lí Pi-ta-go vào tam giác ABC
   \(BC^2=AB^2+AC^2=15^2+20^2=625\Rightarrow BC=20\left(cm\right)\)

Tam giác ABC có BD là đuognừ phân giác theo tính chất phân giác ta có:

\(\frac{AD}{DC}=\frac{AB}{BC}\) mà theo tính chất dãy tỉ số bằng nhau ta có: \(\frac{AD}{AD+DC}=\frac{AB}{AB+BC}\Leftrightarrow\frac{AD}{AC}=\frac{AB}{15+225}\Leftrightarrow\frac{AD}{20}=\frac{15}{40}\Rightarrow AD=\frac{20\times15}{40}=7,5\left(cm\right)\).

b) Xét Tam giácCHD và Tam giác CAB có

                      ^H = ^A = 90 độ

                    ^C chung
\(\Rightarrow\) Tam giác CHD đồng dạng với tam giácCAB

\(\Rightarrow\frac{HD}{AB}=\frac{CH}{CA}=\frac{CD}{CB}\Rightarrow CH.CB=CD.CA\).

c) Ta có: CD = AC - AD = 20 - 7,5 = 12,5(cm).
Từ tỉ số đồng dạng ở câu b ta có:

\(CH=\frac{CA.CD}{CB}=\frac{20.12,5}{25}=10\left(cm\right).\)

\(HD=\frac{AB.CH}{CA}=\frac{15.10}{20}=7,5\left(cm\right).\)

Vì tam giác HCD vuông tại H nên \(S_{CHD}=\frac{HC.HD}{2}=\frac{10.7,5}{2}=37,5\left(cm^2\right).\)