Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án cần chọn là: C
Từ B kẻ BE vuông góc với CD tại E.
Tứ giác ABED là hình thang có hai cạnh bên AD // BE nên AD = BE, AB = DE.
Mặt khác, DC = BC = 2AB nên DC = 2ED, do đó E là trung điểm của DC.
Xét ΔBDE và ΔBCE có B E D ^ = B E C ^ = 90 ° ; DE = EC
BE cạnh chung nên ΔBED = ΔBEC (c – g – c)
Suy ra BD = BC mà BC = DC (gt) => BD = BC = CD nên ΔBCD đều.
Xét ΔBCD đều có BE là đường cao cũng là đường phân giác nên
E B C ^ = 1 2 D B C ^ = 1 2 × 60 ° = 30 °
Vì AD // BE mà B A D ^ = 90 ° nên A B E ^ = 180 ° - B A D ^ = 180 ° - 90 ° = 90 ° (hai góc trong cũng phía bù nhau)
Từ đó A B C ^ = A B E ^ + E B C ^ = 90 ° + 30 ° = 120 °
Vậy A B C ^ = 120 °
a) -Qua B kẻ đường thẳng vuông góc với DC tại E.
-Xét tứ giác ABED: \(\widehat{ADE}=\widehat{BAD}=\widehat{DEB}=90^0\)
\(\Rightarrow\)ABED là hình chữ nhật nên \(AD=BE\); \(AB=ED=4\left(cm\right)\)
-Xét △BEC vuông tại E:
\(BE^2+EC^2=BC^2\) (định lí Py-ta-go)
\(\Rightarrow BE^2+\left(DC-DE\right)^2=BC^2\)
\(\Rightarrow BE^2+\left(9-4\right)^2=13^2\)
\(\Rightarrow BE^2=13^2-5^2=144\)
\(\Rightarrow BE=AD=12\left(cm\right)\)
b) \(S_{ABCD}=\dfrac{AD.\left(AB+CD\right)}{2}=\dfrac{12.\left(4+9\right)}{2}=78\left(cm^2\right)\)
c) -Đề sai.