K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(DB=\sqrt{20^2+15^2}=25\left(cm\right)\)

\(AH=\dfrac{AB\cdot AD}{BD}=12\left(cm\right)\)

b: Xét ΔADB vuông tại A và ΔHDA vuông tại H có

góc ADB chung

Do đó: ΔADB\(\sim\)ΔHDA

23 tháng 5 2022

cho mình xin vẽ hình với chính xác câu b/c/ được k cậu :<khocroi

a: Xét ΔAIB vuông tại I và ΔAEC vuông tại E có

góc IAB chung

=>ΔAIB đồng dạng vơi ΔAEC

b: ΔAIB đồng dạng với ΔAEC

=>AI/AE=AB/AC

=>AI/AB=AE/AC

=>ΔAIE đồng dạng với ΔABC và AB*AE=AI*AC

c: Xét ΔFAC vuông tại F và ΔICB vuông tại I có

góc FAC=góc ICB

=>ΔFAC đồng dạng với ΔICB

=>AF/IC=CA/CB

=>AF*CB=CA*IC

=>AB*AE+AF*CB=AC^2

29 tháng 4 2018

-(a+b)^3=-(1)^3=-1 cả hai đều đúng

a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có

góc E chung

=>ΔBDE đồng dạng với ΔDCE

b: BD=căn 8^2+6^2=10cm

BE=10^2/6=100/6=50/3cm

EC=DC^2/BC=8^2/6=32/3cm

Xét ΔEBD có CH//BD

nên CH/BD=EC/EB

=>CH/10=32/50=16/25

=>CH=160/25=6,4cm

a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có

góc E chung

=>ΔBDE đồng dạng với ΔDCE

b: Xét ΔHCD vuông tại H và ΔCDB vuông tại C có

góc HCD=góc CDB

=>ΔHCD đồng dạng với ΔCDB

=>HC/CD=CD/DB

=>CD^2=HC*DB

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔACB có AD là phân giác

nên BD/AB=CD/AC
=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó:BD=30/7cm; CD=40/7cm

a) Ta có: \(BC^2=5^2=25\)

\(AB^2+AC^2=3^2+4^2=25\)

Do đó: \(BC^2=AB^2+AC^2\)(=25)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

2 tháng 4 2017

mk cũng đang mắc câu này,bạn bk chưa trả lời giúp mk đi