Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) từ me vuông góc fc ab vuông góc fc=> me song song ab
=> mn song song ab => mn song song dc (1)
mà ab song song dc (do abcd là hbh)
từ ad ss bc (do .....)
=> md sscn (2) => ma ss bn (5)
từ (1)(2) => mndc là hbh (..) (3)
từ ab =2ad => ab=am=mdmà ab =dc (..) => md=dc (4)_
từ (3)(4) => mndc là hình thoi (...)
b) từ ne ss ab (cmt)
=> ne ss bf
mà nb = nc => fe=ec => e là tđ cf
c) từ abcd là hbh => a = dcb =60
từ mn ss ab và (5) => abnm là hbh (..)
ta có : mcd= 60\ 2 = 30
mà dcf + mcf +mcd
90=30 + mcf
mcf = 60 (6)
trong tam giác mfc có me là đcao đồng thời là đường tt
=> tam giác mfc cân tại M (7)
từ (6)(7) => mfc đều
d)từ fmc đều => fm=fc=> f thuộc trung trực mc
từ mn =nc => n thuộc trung trực mc
từ dm =dc => d thuộc trung trực mc
từ 3 ý trên => f,n,d thẳng hàng
(nếu đúng mình xin 1 tích nha :>> )
Giải thích các bước giải:
Ta có tứ giác ABCD là hbh
=> AD=BC; AD//BC
Mà M và N là trung điểm của AD và BC
=> MD=NC
Xét tứ giác MNCD có ;
MD//NC
MD=NC
=> Tứ giác MNCD là hbh
Mà MD=CD=AD/2
=> Tứ giác MNCD là hình thoi
b) Ta có tứ giác MNCD là hình thoi
=> CD//MN
Xét ΔBFC có: EN//BF
N là trung điểm của BC
=> EN là đườngtrung bình của tam giác BFC
=> E là trung điểm của CF
c) Ta có tứ giác MNCD là hình thoi
=> CM là tia phân giác của gốc BCD
=> Góc BCA=Góc BCD/2=60/2=30
Xét tam giác BFC có NE//BF
NE⊥FC
=> BF⊥FC
=> Góc BCF=90- góc FBC=90-góc BAD=30
=> Góc FCM=Góc FCB+ góc BCM=60
Xét tam giác MCF có ME vừa là đường cao vừa là trung tuyến
=> ΔMCF cân tại M
Mà góc MCF=60
=>ΔMCF đều
d) Ta có : FM=FC( do ΔMCF đều) => F∈ trung trực của MC
DM=DC(=AD/2) =>D∈trung trực của MC
Có NC=NM=> N∈trung trực của MC
=> F;N;D cùng thuộc trung trực của MC
=> F;N;D thẳng hàng
d) gọi O là trung điểm của FB
nối O vs N
=> ON là đường trung bình của tam giác FBD và tam g BFC
=> ON // FC , ON // BD ( T/C đường trung bình )
=> FC // BD
tứ giác FBDC có FB // CD (vì AB // CD )
FC // BD (cmt)
=> FBDC là HBH (vì là tứ giác có các cạnh đối //)
=> FD giao BC tại trung điểm mỗi đường (t/c HBH)
mà N là trung điểm BC => N là trung điểm FD
=> N,F,D thẳng hàng
a. Do ABCD là hình bình hành nên
• AB=CD
• AD=BC=> 1/2AD=1/2BC=> MD=NC • AD//BC
=> MD//NC
=> MNCD là hình bình hành
Ta có AD=2AB=> AD=2CD
=> CD=1/2AD=MD
Xét hbh MNCD: MD=CD
=> MNCD là hình thoi b.
Do MNCD là hình thoi => MN//CD Mà AB//CD
=> MN//AB Mà F thuộc AB, E thuộc MN
=> BF//NE Xét tam giác BFC có BN=NC, NE//BF
=> FE=EC => E là trung điểm FC
Bạn sửa rồi thì giải giúp mình được khong ạ?
a) từ me vuông góc fc ab vuông góc fc=> me song song ab
=> mn song song ab => mn song song dc (1)
mà ab song song dc (do abcd là hbh)
từ ad ss bc (do .....)
=> md sscn (2) => ma ss bn (5)
từ (1)(2) => mndc là hbh (..) (3)
từ ab =2ad => ab=am=mdmà ab =dc (..) => md=dc (4)_
từ (3)(4) => mndc là hình thoi (...)
b) từ ne ss ab (cmt)
=> ne ss bf
mà nb = nc => fe=ec => e là tđ cf
c) từ abcd là hbh => a = dcb =60
từ mn ss ab và (5) => abnm là hbh (..)
ta có : mcd= 60\ 2 = 30
mà dcf + mcf +mcd
90=30 + mcf
mcf = 60 (6)
trong tam giác mfc có me là đcao đồng thời là đường tt
=> tam giác mfc cân tại M (7)
từ (6)(7) => mfc đều
d)từ fmc đều => fm=fc=> f thuộc trung trực mc
từ mn =nc => n thuộc trung trực mc
từ dm =dc => d thuộc trung trực mc
từ 3 ý trên => f,n,d thẳng hàng
(nếu đúng mình xin 1 tích nha :>> )