Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔAHB vuông tại H và ΔACE vuông tại E có
góc A chung
=>ΔABH đồng dạng với ΔACE
Xét ΔBHC vuông tại H và ΔCFA vuông tại F có
góc BCA=góc CAF
=>ΔBHC đồng dạng với ΔCFA
c: AB/AC=AH/AE
=>AB*AE=AH*AC
BC/AC=CH/AF=BH/CF
=>DA/AC=CH*AF
=>AC*CH=AD*AF
=>AC^2=AB*AE+AD*AF
a. hai tg ABG và tg ACE vuông tại G và E có góc GAB chung nên đồng dạng(gg)
b. Vì tg AEC và ABG đồng dạng --> AB/AC = AG/AE -> AB.AE = AC.AG(1)
Vì hai tg vuông AFC và CGB có góc CAF = góc BCG (slt) --> tg AFC và tg CGB đồng dạng --> AF/CG = AC/BC --> AF.BC = AC.CG thay BC = AD --> AF.AD = AC.CG (2).
Cộng (1) và (2) vế theo vế --> AB.AE + AD.AF = AC.AG + AC.CG = AC(AG+GC) = AC.AC = AC^2
Vậy AB.AE + AD.AF = AC^2.