Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có : \(BE\perp AC\left(gt\right)\)
\(DF\perp AC\left(gt\right)\)
Chứng minh :
\(\widehat{BEO}=\widehat{DFO}\left(g-c-g\right)\) ( tự làm )
=> BE = DF
Suy ra : Tứ giác : BEDF là hình bình hành.
b)
Ta có : \(\widehat{ABC}=\widehat{ADC}\Rightarrow\widehat{HBC}=\widehat{KDC}\)
Chứng minh \(\widehat{CBH}=\widehat{CDK}\left(g-g\right)\) ( tự làm nha Phan Cả Phát )
\(\Rightarrow\frac{CH}{CB}=\frac{CK}{CD}\Rightarrow CH.CD=CK.CB\)
Chứng minh : \(\widehat{AFD}=\widehat{AKC}\left(g-g\right)\)( tự làm )
\(\Rightarrow\frac{AF}{AD}=\frac{AK}{AC}\Rightarrow AD.AK=AF.AC\)
CMTT
Ta có :
\(\frac{CF}{CD}=\frac{AH}{AC}\)
Mà CD = AB \(\Rightarrow\frac{CF}{AB}=\frac{AH}{AC}\Rightarrow AB.AH=CF.AC\)
\(\Rightarrow AB.AH+AB.AH=CF.AC+AF.AC=\left(CF+AF\right)AC=AC^2\)
=) đpcm
Đáp án: Giải thích các bước giải a) Hình bình hành ABCD gọi OO là giao điểm của AC và BD ⇒O⇒O là trung điểm của AC, BD (tính chất ) Xét hai tam giác vuông ΔOEBΔOEB và OFDOFD có: OB=ODOB=OD ˆBOE=ˆDOFBOE^=DOF^ (đối đỉnh) ⇒ΔOEB=ΔOFD⇒ΔOEB=ΔOFD (cạnh huyền-góc nhọn) ⇒BE=DF⇒BE=DF (hai cạnh tương ứng) Và có BE//DFBE//DF (vì cùng vuông góc với AC giả thiết) Từ hai điều trên ⇒⇒ tứ giác BEDF là hình bình hành (dấu hiệu nhận biết) b) Xét ΔHBCΔHBC và ΔKDCΔKDC có: ˆBHC=ˆDKC=90oBHC^=DKC^=90o (giả thiết) ˆHBC=ˆKDCHBC^=KDC^ (=ˆBAD=BAD^ đồng vị) ⇒ΔHBC∼ΔKDC⇒ΔHBC∼ΔKDC (g.g) ⇒CHCK=CBCD⇒CHCK=CBCD (hai cạnh tương ứng tỉ lệ) ⇒CH.CD=CK.CB⇒CH.CD=CK.CB (đpcm) c) Xét ΔAEBΔAEB và ΔAHCΔAHC có: ˆAA^ chung ˆAEB=ˆAHC=90oAEB^=AHC^=90o ⇒ΔAEB∼ΔAHC⇒ΔAEB∼ΔAHC (g.g) ⇒AEAH=ABAC⇒AEAH=ABAC (hai cạnh tương ứng tỉ lệ) ⇒AE.AC=AB.AH⇒AE.AC=AB.AH (1) Xét ΔAFDΔAFD và ΔAKCΔAKC có: ˆAA^ chung ˆAFD=ˆAKC=90oAFD^=AKC^=90o ⇒ΔAFD=ΔAKC⇒ΔAFD=ΔAKC (g.g) ⇒AFAK=ADAC⇒AFAK=ADAC (hai cạnh tương ứng bằng nhau) ⇒AF.AC=AK.AD⇒AF.AC=AK.AD (2) Ta có OE=OF (suy ra từ ΔOEB=ΔOFDΔOEB=ΔOFD câu a) OA=OC (tính chất hình bình hành) ⇒OA−OE=OC−OF⇒OA−OE=OC−OF hay AE=FCAE=FC (3) Từ (1), (2) và (3) suy ra AB.AH+AK.AD=AE.AC+AF.ACAB.AH+AK.AD=AE.AC+AF.AC =AC(AE+AF)=AC(FC+AF)=AC2=AC(AE+AF)=AC(FC+AF)=AC2 (đpcm)