Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) bạn tự vẽ hình nhé!
Có : \(AE=BE=\frac{1}{2}AB\) (đề cho)
\(DF=CF=\frac{1}{2}DC\) (đề cho)
mà \(AB=CD\)
\(\Rightarrow\) \(AE=BE=DF=CF\)
Xét tứ giác AEFD có:
\(AE=DF\) (cmt) và AE//DF( AB//CD)
\(\Rightarrow\) Tứ giác AEFD là hình bình hành
Xét tứ giác AECF có :
AE = CF ( cmt) và AE//CF ( AB//CD)
\(\Rightarrow\) Tứ giác AECF là hình bình hành
M là giao điểm của AF và DE
\(\Rightarrow\) AM = FM=\(\frac{1}{2}AF\) ( tính chất đ/chéo hbhành) (1)
N là giao điểm của BF và CE
\(\Rightarrow\) EN = CN=\(\frac{1}{2}CE\) ( tính chất đ/chéo hbhành) (2)
Có AF = AM + FM
CE = EN + CN
mà AE = CE ( AECF là hbh)
Từ (1) và (2) suy ra MF= EN và MF//EN ( AF//CE )
\(\Rightarrow\) EMFN là hình bình hành (3)
Có AE = AD ( cùng bằng 2AB ) và AEFD là hình bình hành nên AEFD là hình thoi
\(\Rightarrow\) AF \(\perp\) DE tại M hay góc EMF = 90 độ (4)
Từ (3) và (4) suy ra : EMFN là hcn
a: Xét tứ giác DEBF có
FD//BE
FD=BE
Do đó: DEBF là hình bình hành
a) Tứ giác AEFD là hình thoi, tứ giác AECF là hình bình hành (tự chứng minh).
b) Tứ giác AECF là hình bình hành nên EN // FM. Tứ giác AECF là hình bình hành nên EM // FN. AEFD là hình thoi nên AF \(\perp\) DE.
Hình bình hành EMFN có \(\widehat{M}=90^o\) nên là hình chữ nhật.
c) Hình chữ nhật EMFN là hình vuông
\(\Leftrightarrow\) ME = MF \(\Leftrightarrow\) DE = AF (vì DE = 2ME, AF = 2MF)
\(\Leftrightarrow\) Hình thoi AEFD có hai đường chéo bằng nhau
\(\Leftrightarrow\) AEFD là hình vuông \(\Leftrightarrow\) \(\widehat{A}=90^o\).
\(\Leftrightarrow\) Hình bình hành ABCD là hình chữ nhật.
Như vậy, hình chữ nhật EMFN là hình vuông nếu ABCD là hình chữ nhật.