Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta đo được: AB = CD; BC = AD. Vậy các cạnh đối của hình bình hành bằng nhau
2) OA = OC; OB = OD
3) + Khi đặt eke vuông góc với AB, ta thấy eke cũng vuông góc với CD. Do đó AB và CD song song với nhau.
+ Khi đặt eke vuông góc với BC, ta thấy eke cũng vuông góc với AD. Do đó BC và AD song song với nhau.
Vậy các cạnh đối của hình bình hành song song với nhau.
4) Gấp giấy, ta thấy các góc đối của hình bình hành bằng nhau.
Do \(DC=3EC\Rightarrow S_{ABCD}=3S_{FBCE}\)
\(\Rightarrow S_{FBCE}=\dfrac{48}{3}=16\left(m^2\right)\)
Chiều cao là \(\dfrac{10+10}{2}=10\left(cm\right)\)
Diện tích hbh là \(10\cdot6=60\left(cm^2\right)\)
Chu vi hình bình hành ABCD:
(AB + AD) . 2 = 90 (cm)
AB + AD = 90 : 2 = 45 (cm)
\(2x+x=45\left(cm\right)\)
\(3x=45\left(cm\right)\)
\(x=45:3=15\left(cm\right)\)
\(\Rightarrow AB=2.15=30cm;AD=15cm\)
Ta có CF=DE=CD=4 cm
=> BC=AD=32:2-4=12 cm
Hình thoi CDEF và hình bình hành ABCD có chung đường cao từ C->AE nên
\(\dfrac{S_{CDEF}}{S_{ABCD}}=\dfrac{DE}{AD}=\dfrac{4}{12}=\dfrac{1}{3}\Rightarrow S_{ABCD}=3.S_{CDEF}=3.54=162cm^2\)
Ta có:
\(\widehat{A}=\widehat{C}=50^o\)
\(\widehat{B}=\widehat{C}=130^o\)
nhanh lên