Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tứ giác AMNB
có BN // AM (BC // AD)
BN = AM (BC=AD, N;M là Tđiểm BC;AD)
=> AMNB là HBH
2AB = AD, 2AM = AD => AM =AB
=> AMNB là HThoi ( vì là HBH có 2 cạnh kề = nhau )
b) AMNB là Hthoi
=> AN là tia Phân giác của ^BNM
^BNM = 120* (là góc TCP vs ^B)
=> ^ANM = ^BNM /2 = 120*/2 = 60*
t/ tự ta có MNCD là Hthoi
=> ND là tia Phân giác của ^MNC
^MNC = 60* (là góc TCP vs ^NCD, mà ^NCDlà góc TCP vs ^B)
=> ^MND = ^MNC/2 = 30*
có ^AND = ^ANM + ^MND = 60* + 30* = 90*
=> AN vuông vs N
tam giác BAN cân tại B ( AB = BN t/c Hthoi )
^B =60* (gt)
=> tg BAN đều
=> AN = BA
AB = CD (t/c HBH )
=> AN = CD
^ANC = ^ANM + ^MNC , ^MNC =60*= ^B (2 góc đồng vị)
=> ^ANC = 60* +60* =120*
xét tg ANC và tg NCD
có NC chung
^ANC = ^NCD (=120*)
AN = CD (cmt)
=> tg ANC = tg NCD (cgc)
=> AC = ND ( 2 cạnh t/ứ)
c) gọi O là giao cuả BM và AN
có AMNB là Hthoi (cm câu a)
=> BM vuông vs AN (t/c Hthoi)
BM cắt AN tại trung điểm mỗi đường
=> O là trung điểm AN
có tam giác BAN đều (cm câu b)
=> AN = AB = a
mà O là trung điểm AN (cmt).
=> AO = ON = AN/2 = a/2
xét tg BON vuông tại O
có \(BO^2+ON^2=BN^2=>BO^2=BN^2-ON^2=a^2-\left(\dfrac{a}{2}\right)^2=\dfrac{3a^2}{4}=>BN=\dfrac{\sqrt{3}a}{2}\)
có O là trung điểm BM (T/C Hthoi )
=> BM = 2BO = 2\(\dfrac{\sqrt{3}a}{2}\)=\(\sqrt{3}a\)
S Hthoi ABMN = \(\dfrac{1}{2}AN.BM=\dfrac{1}{2}a.\sqrt{3}a=\dfrac{a^2\sqrt{3}}{2}\)
xét tứ giác AMDN có BN // MD, BN = MD =a
=> AMDN là HBH
=> BM = ND ( t/c HBH )
=> ND = \(\sqrt{3}a\)
S tam giác AND = \(\dfrac{1}{2}AN.ND=\dfrac{1}{2}a.\sqrt{3}a=\dfrac{a^2\sqrt{3}}{2}\)
a: Xét tứ giác AMNB có
AM//NB
AM=NB
Do đó: AMNB là hình bình hành
mà AM=AB
nên AMNB là hình thoi
b: Xét tứ giác MDCN có
MD//CN
MD=CN
Do đó; MDCN là hình bình hành
mà DM=DC
nên MDCN là hình thoi
=>MD=NM
mà NM=AM
nên NM=AM=MD
=>NM=AD/2
Xét ΔAND có
NM là đường trung tuyến
NM=AD/2
Do đó: ΔAND vuông tại N
a. tam giác ABC có AM=MC và BN=NC => MN là đg TB của ABC => MN//AB => AMNB là hình thang ( k thể là Hình bình hành được )
b. D là điểm đối xứng với B qua M =>BM=MD
Tứ giác ABCD có AM=MC và BM=MD => 2 đg chéo cắt nhau tại trung điểm của mỗi đường
=> ABCD là HBH
c. E đối xứng với A qua N => AN=NE
ABEC có BN=NC và AN=NE => ABEC là HBH ( CMTT như câu b )
a: Xét tứ giác BMCD có
N là trung điểm chung của BC và MD
=>BMCD là hình bình hành
b: Ta có: BMCD là hình bình hành
=>BM//CD và BM=CD
Ta có: BM//CD
M\(\in\)AB
Do đó: AM//CD
ta có: BM=CD
AM=MB
Do đó: AM=CD
Xét tứ giác AMDC có
AM//DC
AM=DC
Do đó: AMDC là hình bình hành
Hình bình hành AMDC có \(\widehat{MAC}=90^0\)
nên AMDC là hình chữ nhật
c: Ta có: AMDC là hình chữ nhật
=>\(\widehat{DMA}=90^0\)
=>DM\(\perp\)AB tại M
Xét ΔDBA có
DM là đường cao
DM là đường trung tuyến
Do đó: ΔDBA cân tại D
Bài 1:
a: Xét tứ giác ECDF có
EC//FD
EC=FD
Do đó: ECDF là hình bình hành
mà FD=DC
nên ECDF là hình thoi
b: Xét tứ giác ABED có EB//AD
nên ABED là hình thang
c: Xét ΔAED có
EF là đường trung tuyến
EF=AD/2
Do đó: ΔAED vuông tại E
a: Xét tứ giác AMNB có
BN//AM
BN=AM
Do đó: AMNB là hình bình hành
mà BN=AB
nên AMNB là hình thoi