K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

B A C D N M O 60* a

a) tứ giác AMNB

có BN // AM (BC // AD)

BN = AM (BC=AD, N;M là Tđiểm BC;AD)

=> AMNB là HBH

2AB = AD, 2AM = AD => AM =AB

=> AMNB là HThoi ( vì là HBH có 2 cạnh kề = nhau )

b) AMNB là Hthoi

=> AN là tia Phân giác của ^BNM

^BNM = 120* (là góc TCP vs ^B)

=> ^ANM = ^BNM /2 = 120*/2 = 60*

t/ tự ta có MNCD là Hthoi

=> ND là tia Phân giác của ^MNC

^MNC = 60* (là góc TCP vs ^NCD, mà ^NCDlà góc TCP vs ^B)

=> ^MND = ^MNC/2 = 30*

có ^AND = ^ANM + ^MND = 60* + 30* = 90*

=> AN vuông vs N

tam giác BAN cân tại B ( AB = BN t/c Hthoi )

^B =60* (gt)

=> tg BAN đều

=> AN = BA

AB = CD (t/c HBH )

=> AN = CD

^ANC = ^ANM + ^MNC , ^MNC =60*= ^B (2 góc đồng vị)

=> ^ANC = 60* +60* =120*

xét tg ANC và tg NCD

có NC chung

^ANC = ^NCD (=120*)

AN = CD (cmt)

=> tg ANC = tg NCD (cgc)

=> AC = ND ( 2 cạnh t/ứ)

c) gọi O là giao cuả BM và AN

có AMNB là Hthoi (cm câu a)

=> BM vuông vs AN (t/c Hthoi)

BM cắt AN tại trung điểm mỗi đường

=> O là trung điểm AN

có tam giác BAN đều (cm câu b)

=> AN = AB = a

mà O là trung điểm AN (cmt).

=> AO = ON = AN/2 = a/2

xét tg BON vuông tại O

\(BO^2+ON^2=BN^2=>BO^2=BN^2-ON^2=a^2-\left(\dfrac{a}{2}\right)^2=\dfrac{3a^2}{4}=>BN=\dfrac{\sqrt{3}a}{2}\)

có O là trung điểm BM (T/C Hthoi )

=> BM = 2BO = 2\(\dfrac{\sqrt{3}a}{2}\)=\(\sqrt{3}a\)

S Hthoi ABMN = \(\dfrac{1}{2}AN.BM=\dfrac{1}{2}a.\sqrt{3}a=\dfrac{a^2\sqrt{3}}{2}\)

xét tứ giác AMDN có BN // MD, BN = MD =a

=> AMDN là HBH

=> BM = ND ( t/c HBH )

=> ND = \(\sqrt{3}a\)

S tam giác AND = \(\dfrac{1}{2}AN.ND=\dfrac{1}{2}a.\sqrt{3}a=\dfrac{a^2\sqrt{3}}{2}\)

29 tháng 10 2017

Ai bt giúp mình nhanh với nha

a: Xét tứ giác AMNB có

AM//NB

AM=NB

Do đó: AMNB là hình bình hành

mà AM=AB

nên AMNB là hình thoi

b: Xét tứ giác MDCN có 

MD//CN

MD=CN

Do đó; MDCN là hình bình hành

mà DM=DC

nên MDCN là hình thoi

=>MD=NM

mà NM=AM

nên NM=AM=MD

=>NM=AD/2

Xét ΔAND có 

NM là đường trung tuyến

NM=AD/2

Do đó: ΔAND vuông tại N

11 tháng 9 2017

a. tam giác ABC có AM=MC và BN=NC => MN là đg TB của ABC => MN//AB => AMNB là hình thang ( k thể là Hình bình hành được )

b. D là điểm đối xứng với B qua M =>BM=MD

Tứ giác ABCD có AM=MC và BM=MD => 2 đg chéo cắt nhau tại trung điểm của mỗi đường 

=> ABCD là HBH

c. E đối xứng với A qua N => AN=NE

ABEC có BN=NC và AN=NE => ABEC là HBH ( CMTT như câu b )

a: Xét tứ giác BMCD có

N là trung điểm chung của BC và MD

=>BMCD là hình bình hành

b: Ta có: BMCD là hình bình hành

=>BM//CD và BM=CD

Ta có: BM//CD

M\(\in\)AB

Do đó: AM//CD

ta có: BM=CD

AM=MB

Do đó: AM=CD

Xét tứ giác AMDC có

AM//DC

AM=DC

Do đó: AMDC là hình bình hành

Hình bình hành AMDC có \(\widehat{MAC}=90^0\)

nên AMDC là hình chữ nhật

c: Ta có: AMDC là hình chữ nhật

=>\(\widehat{DMA}=90^0\)

=>DM\(\perp\)AB tại M

Xét ΔDBA có

DM là đường cao

DM là đường trung tuyến

Do đó: ΔDBA cân tại D

loading...

Bài 1: 

a: Xét tứ giác ECDF có 

EC//FD

EC=FD

Do đó: ECDF là hình bình hành

mà FD=DC

nên ECDF là hình thoi

b: Xét tứ giác ABED có EB//AD

nên ABED là hình thang

c: Xét ΔAED có 

EF là đường trung tuyến

EF=AD/2

Do đó: ΔAED vuông tại E