K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2019

Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

a) Ta có:

O là trung điểm của AC nên Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Do đó Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

b) ABCD là hình bình hành nên Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Do đó Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Mà ABCD là hình bình hành nên Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Do đó Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

d) ABCD là hình bình hành nên Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Lại có Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Do đó Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

7 tháng 10 2018

Ta có: ABCD là hình bình hành nên Giải bài 2 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 2 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Xét tứ giác KHCD có 

KH//CD

KH=CD

Do đó: KHCD là hình bình hành

Suy ra: \(\overrightarrow{CH}=\overrightarrow{DK}\)

2 tháng 8 2019

Giải bài 3 trang 7 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 3 trang 7 sgk Hình học 10 | Để học tốt Toán 10

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

20 tháng 9 2017

Giải bài 9 trang 59 sgk Hình học 10 | Để học tốt Toán 10

Gọi O là giao điểm của AC và BD ⇒ O là trung điểm của AC và BD.

Xét ΔABC có BO là trung tuyến

Giải bài 9 trang 59 sgk Hình học 10 | Để học tốt Toán 10

Mà O là trung điểm của BD nên BD = 2. BO ⇒ BD2 = 4. BO2

⇒ BD2 = 2.(AB2 + BC2) – AC2

⇒ BD2 + AC2 = 2.(AB2 + BC2)

⇒ m2 + n2 = 2.(a2 + b2) (ĐPCM).

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Cách 1:

Do ABCD là hình bình hành nên \(\overrightarrow {AB}  = \overrightarrow {DC} \)

\(\begin{array}{l} \Rightarrow \overrightarrow {AM}  + \overrightarrow {MB}  = \overrightarrow {DM}  + \overrightarrow {MC} \\ \Leftrightarrow  - \overrightarrow {MA}  + \overrightarrow {MB}  =  - \overrightarrow {MD}  + \overrightarrow {MC} \\ \Leftrightarrow \overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MB}  + \overrightarrow {MD} \end{array}\)

Cách 2:

Ta có: \(\overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MB}  + \overrightarrow {MD}  \Leftrightarrow \overrightarrow {MA}  - \overrightarrow {MB}  = \overrightarrow {MD}  - \overrightarrow {MC} \) (*)

Áp dụng quy tắc hiệu ta có: \(\overrightarrow {MA}  - \overrightarrow {MB}  = \overrightarrow {BA} ;\;\;\overrightarrow {MD}  - \overrightarrow {MC}  = \overrightarrow {CD} \)

Do đó (*) \( \Leftrightarrow \overrightarrow {BA}  = \overrightarrow {CD} \) (luôn đúng do ABCD là hình bình hành)

Cách 3:

Ta có:

\(\overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MB}  + \overrightarrow {BA}  + \overrightarrow {MD}  + \overrightarrow {DC}  = \overrightarrow {MB}  + \overrightarrow {MD}  + \left( {\overrightarrow {BA}  + \overrightarrow {DC} } \right)\)

Vì ABCD là hình bình hành nên \(\overrightarrow {AB}  = \overrightarrow {DC} \)\( \Rightarrow  - \overrightarrow {BA}  = \overrightarrow {DC} \) hay \(\overrightarrow {BA}  + \overrightarrow {DC}  = \overrightarrow 0 \)

\( \Rightarrow \overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MB}  + \overrightarrow {MD} \) (đpcm)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Tứ giác ABCD là hình bình hành 

\( \Leftrightarrow \left\{ \begin{array}{l}
AB // DC\\
AB = DC
\end{array} \right.\)

Mà \(AB // DC \Leftrightarrow \overrightarrow {AB}  ,\, \overrightarrow {DC} \) cùng phương, do đó cùng hướng.

\( \Leftrightarrow \left\{ \begin{array}{l}
\overrightarrow {AB} , \overrightarrow {DC} \,{\rm{ cùng hướng}}\\
AB = DC
\end{array} \right.\)

\(\Leftrightarrow \overrightarrow {AB}  = \overrightarrow {DC} \)

Vậy tứ giác ABCD là hình bình hành khi và chỉ khi \(\overrightarrow {AB}  = \overrightarrow {DC} \).