Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAOM và ΔCON có
\(\widehat{MAO}=\widehat{NCO}\)
OA=OC
\(\widehat{AOM}=\widehat{CON}\)
Do đó: ΔAOM=ΔCON
Suy ra: AM=CN
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: Vì DEBFlà hình bình hành
nên DB cắt EF tại trung điểm của mỗi đường(1)
Vì ABCD là hình bình hành
nên AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra E,O,F thẳng hàng
c: Để DEBF là hình thoi thì DE=BE=AB/2
Xét ΔDAB có
DE là trung tuyến
DE=AB/2
Do đo:ΔDAB vuông tại D
=>DA vuông góc với DB
a: Ta có: AM+MB=AB
CN+ND=CD
mà AB=CD
và AM=CN
nên MB=ND
Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
Suy ra: DM//BN
Vì ABCD là hình bình hành
a.Ta có:AB=DC (gt) => AM=CN
b.Vì AB=DC ;AB//DC
=>MB=DN
MB//DN
=>Tứ giác MBND là hình bình hành
c.Ta có AM=NC(AB=CN)
AM//NC(AB//CN)
=>Tứ giác AMNC là hình bình hành
=>AM//NC
cái hình thì mik k vẽ đc r vì bận quá thông cảm nha ^.^
ABCD là hbh
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔOAM và ΔOCP có
góc OAM=góc OCP
OA=OC
góc AOM=góc COP
=>ΔOAM=ΔOCP
=>OM=OP
=>O là trung điểm của MP
Xét ΔOQD và ΔONB có
góc ODQ=góc OBN
OD=OB
góc QOD=góc NOB
=>ΔOQD=ΔONB
=>OQ=ON
=>O là trung điểm của QN
Xét tứ giác MNPQ có
O là trung điểm chung của MP và NQ
=>MNPQ là hbh
a: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔMAO và ΔNCO có
góc AOM=góc CON
OA=OC
góc oAM=góc OCN
=>ΔMAO=ΔNCO
=>AM=CN
b: AM+MB=AB
CN+ND=CD
mà AM=CN và AB=CD
nên MB=ND
Xét tứ giác MBND có
MB//ND
MB=ND
=>MBND là hbh
c: Đề sai rồi bạn
mình cảm ơn ạ