Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AECK có
AK//CE
AK=CE
Do đó: AECK là hình bình hành
a: Xét tứ giác AECK có
AK//CE
AK=CE
Do đó: AECK là hình bình hành
a: Xét tứ giác AECK có
AK//EC
AK=EC
Do đó: AECK là hình bình hành
a: Xét tứ giác AECK có
AK//CE
AK=CE
Do đó: AECK là hình bình hành
a: Xét tứ giác AECK có
AK//CE
AK=CE
=>AECK là hình bình hành
b: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
AKCE là hbh
=>AC cắt KE tại trung điểm của mỗi đường
=>O là trung điểm của KE
c: Xét ΔDMC có
E là trung điểm của DC
EN//MC
=>N là trung điểm của DM
=>DN=NM
Xét ΔABN có
K là trung điểm của BA
KM//AN
=>M là trung điểm của BN
=>DN=MN=MB
a: Xét tứ giác AECK có
AK//CE
AK=CE
=>AECK là hình bình hành
b: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm của AC
AECK là hbh
=>AC cắt EK tại trung điểm của mỗi đường
=>E,O,K thẳng hàng
c: Xét ΔDMC có
E là trung điểm của DC
EN//MC
=>N là trung điểm của DM
=>DN=NM
Xét ΔABN có
K là trung điểm của BA
KM//AN
=>M là trung điểm của BN
=>MB=MN=DN
a: \(AK=KB=\dfrac{AB}{2}\)
\(DE=EC=\dfrac{DC}{2}\)
mà AB=DC
nên AK=KB=DE=EC
Xét tứ giác AKCE có
AK//CE
AK=CE
Do đó: AKCE là hình bình hành
b: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
AKCE là hình bình hành
=>AC cắt KE tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của KE
=>K,O,E thẳng hàng
a) Ta có: \(AB=DC,AB//CD\)(ABCD là hình bình hành)
Mà \(K,E\in AB,CD;AK=\dfrac{1}{2}AB;CE=\dfrac{1}{2}CD\)
\(\Rightarrow AK=CE\) và \(AK//CE\)
=> AECK là hình bình hành
b) Ta có: O là giao điểm 2 đường chéo AC và BD
=> O là trung điểm AC
=> O là trung điểm KE(AECK là hình bình hành)
=> E,O,K thẳng hàng