K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 8 2021

c.

K thuộc AD nên BC song song DK

Áp dụng định lý Talet: \(\dfrac{BN}{KN}=\dfrac{CN}{DN}=1\Rightarrow BN=KN\) hay N là trung điểm BK

\(\Rightarrow\) BCKD là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Theo câu b, E, M, N thẳng hàng nên Q nằm trên MN (1)

Mà MN là đường trung bình của hình thang ABCD

\(\Rightarrow MN||AD\Rightarrow MN\perp AB\) (2)

Mà M là trung điểm AB (3)

(2);(3) \(\Rightarrow\) MN là trung trực AB (4)

(1);(4) \(\Rightarrow QB=QA\)

d.

Hạ CH vuông góc AD

Trong tam giác vuông CHK: \(cosKAC=\dfrac{AH}{AC}\Rightarrow AH=AC.cos\widehat{KAC}\)

Pitago: \(CH^2+AH^2=AC^2\)

Do đó: \(CK^2=CH^2+HK^2=CH^2+\left(AK-AH\right)^2=CH^2+AH^2+AK^2-2AK.AH\)

\(=AC^2+AK^2-2AK.AC.cos\widehat{KAC}\) (đpcm)

NV
10 tháng 8 2021

undefined

29 tháng 10 2017

Gọi M là trung điểm BC => BM=CM 
Xét tam giác ABC có: 
BM=CM 
AE=EC (giả thiết vì E la trung điểm của AC) 
Nên: EM là đường trung bình trong tam giác ABC 
=>EM//AB và EM=AB/2 
Tương tự: Xét tam giác BCD có: 
FM là đường trung bình trong tam giác BCD 
=>FM//CD và FM=CD/2 
Lại có: 
FM//CD 
mà AB//CD (theo giả thiết ABCD la hthang) 
Nên: FM//AB 
Mà EM//AB 
Do đó, theo tiên đề Ơclit ta có: E,M,F thẳng hàng. 
Vậy,EF=FM-EM=(CD-AB)/2  

22 tháng 3 2021

1. Ta có:
ED,EAED,EA là tiếp tuyến của (O)

→ED⊥OD,EA⊥OA⇒ˆADE=ˆOAE=90o→ED⊥OD,EA⊥OA⇒ADE^=OAE^=90o

EDOAEDOA có ˆADE+ˆOAE=180oADE^+OAE^=180o

⇒EDOA⇒EDOA nội tiếp đường tròn đường kính (OE)

→ˆDOA+ˆDEA=180o→DOA^+DEA^=180o

Mà ABCDABCD là hình thang cân

→ˆDMA=ˆDBA+ˆCAB=2ˆDBA=ˆDOA→DMA^=DBA^+CAB^=2DBA^=DOA^

→ˆDMA+ˆAED=180o→AEDM→DMA^+AED^=180o→AEDM nội tiếp được trong một đường tròn

2. Từ câu 1

→ˆEMA=ˆEDA=ˆDBA=ˆCAB→EMA^=EDA^=DBA^=CAB^

Vì EDED là tiếp tuyến của (O),ABCDABCD là hình thang cân

→EM//AB→EM//AB

3. Ta có:

EM//AB→HK//AB→HMAB=DMDB=CMCA=MKABEM//AB→HK//AB→HMAB=DMDB=CMCA=MKAB

→MH=MK→M→MH=MK→M là trung điểm HK

image

22 tháng 4 2020

gọi M là trung điểm của AF . Ta có OM là đường trung bình của tam giác ACF

\(=>OM//CF,OM=\frac{1}{2}CF\)

ta lại có \(OM//CF,CF\perp CD\left(gt\right)\)

\(=>OM\perp CD.Mà\left(AB//CD\right)\)

\(=>OM//BE\)(1)

mặt khác OM , AM là 2 đường cao của tam giác ABO

=> M là trực tâm của tam giác ABO 

=>\(BM\perp AC.Mà\left(EO\perp AC\right)=>BM//EO\left(2\right)\)

từ 1 zà 2 => tứ giác BMOE là hbh => OM=BE

ta có 

\(OM=BE;OM=\frac{1}{2}CF=>BE=\frac{1}{2}CF\left(and\right)BE//OM//CF\)

\(\Delta KCF\)có \(CF//BE=>\frac{KE}{KF}=\frac{BE}{CF}=\frac{1}{2}\)

16 tháng 6 2015

Người quen nhờ vả à Hậu vừa hỏi mình bài này xong mình cũng bó tay

20 tháng 1 2019

Chuẩn