Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk lm câu khó nhất trong các câu này , rồi bn làm tương tự với các câu còn lại nha .
d) ta có : \(\left\{{}\begin{matrix}2x-y=3+2m\\mx+y=\left(m+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x-3-2m=m^2+2m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x=m^2+4m+4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\\left(m+2\right)x=\left(m+2\right)^2\end{matrix}\right.\).....(1)
th1: \(m+2=0\Leftrightarrow m=-2\)
khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\0x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\in R\\y=2x+1\end{matrix}\right.\)
\(\Rightarrow\) phương trình có vô số nghiệm
th2: \(m+2\ne0\Leftrightarrow m\ne-2\)
khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\x=m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)
\(\Rightarrow\) phương trình có nghiệm duy nhất \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)
vậy khi +) \(m=-2\) phương trình có vô số nghiệm
+) khi \(m\ne-2\) phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
Hệ \(\Leftrightarrow\left\{{}\begin{matrix}x=3m-my\\mx-y=m^2-2\end{matrix}\right.\)
\(\Rightarrow m\left(3m-my\right)-y=m^2-2\)
\(\Leftrightarrow2m^2+2=y\left(1+m^2\right)\)
\(\Leftrightarrow y=\dfrac{2m^2+2}{1+m^2}=2\)
\(\Rightarrow x=3m-2m=m\)
Có \(x^2-2x-y>0\Leftrightarrow m^2-2m-2>0\)
\(\Leftrightarrow\left(m-1-\sqrt{3}\right)\left(m-1+\sqrt{3}\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>1+\sqrt{3}\\m< 1-\sqrt{3}\end{matrix}\right.\)
Vậy...
tự nhiên mình lại nghĩ ra, đây là câu trả lời cho bạn nào chưa biết
a, thay m=3 vào hệ phương trình được
\(\left\{{}\begin{matrix}x+3y=9\\3x-y=3^2-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3y=9\\3x-y=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=9\\9x-3y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10x=30\\3x-y=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3x-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3.3-7=2\end{matrix}\right.\)
Vậy với m=3, thì hệ phương trình có nghiệm (x;y) = (3;2)
b, \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\left(1\right)\)
*)(1)\(\Leftrightarrow\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+my=3m\\m^2x-my=m^3-2m\end{matrix}\right.\)
\(\Rightarrow m^2x+x=m^3+m\)
\(\Leftrightarrow\left(m^2+1\right)x=\left(m^2+1\right)m\)
\(\Leftrightarrow x=m\) (*)
*)(1)\(\Leftrightarrow\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
\(\Rightarrow mx-y=m^2-2\)
\(\Leftrightarrow y=mx-m^2+2\)
mà \(x=m\)(theo(*))\(\Rightarrow y=m.m-m^2+2\)
\(\Leftrightarrow y=m^2-m^2+2\)
\(\Leftrightarrow y=2\)
*)\(x^2-2x-y>0\Rightarrow m^2-2m-2>0\)
\(\Leftrightarrow m^2-2m+1-3>0\)
\(\Leftrightarrow\left(m-1\right)^2>3\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-1>\sqrt{3}\\m-1< -\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>1+\sqrt{3}\\m< 1-\sqrt{3}\end{matrix}\right.\)
vậy với\(\left\{{}\begin{matrix}m>1+\sqrt{3}\\m< 1-\sqrt{3}\end{matrix}\right.\), thì hệ (1) có nghiệm (x;y) thỏa mãn \(x^2-2x-y>0\)
=>x=3m-my và m(3m-my)-y=m^2-2
=>x=3m-my và 3m^2-m^2y-y=m^2-2
=>x=3m-my và 3m^2-y(m^2+1)=m^2-2
=>x=3m-my và y(m^2+1)=3m^2-m^2+2=2m^2+2
=>y=2 và x=3m-2m=m
x^2-y=2x+1
=>m^2-2=2m+1
=>m^2-2m-3=0
=>m=3 hoặc m=-1
thay m=2 vào HPT ta có
\(\left\{{}\begin{matrix}x+2y=2+1\\2x+y=2.2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=3\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+4y=6\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3y=2\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)
vậy ..........
a) Thay số và dễ dàng tìm được nghiệm x, y
b) Giải tổng quát
\(\hept{\begin{cases}x+m^2x-m^3+2m=3m\\y=mx-m^2+2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m\\y=mx-m^2+2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m\\y=2\end{cases}}\)
\(x^2-2x-y=m^2-2m-2>0\)
Tới đây em có thể làm tiếp.