K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

Đặt B là mẫu thức của P thì :

B = ab(x - y)2 + bc(y - z)2 + ca(z - x)2 = abx2 - 2abxy + aby2 + bcy2 - 2bcyz + bcz2 + caz2 - 2cazx + cax2

   = ax2(b + c) + by2(a + c) + cz2(a + b) - 2(bcyz + acxz + abxy) (1)

ax + by + cz = 0 => (ax + by + cz)2 = 0 <=> a2x2 + b2y2 + c2z2 + 2(bcyz + acxz + abxy) = 0 

=> -2(bcyz + acxz + abxy) = a2x2 + b2y2 + c2z2 (2)

Từ (1) và (2),ta có : B = ax2(b + c) + by2(a + c) + cz2(a + b) + a2x2 + b2y2 + c2z2

= ax2(a + b + c) + by2(a + b + c) + cz2(a + b + c) = (a + b + c)(ax2 + by2 + cz2)

\(\Rightarrow P=\frac{1}{a+b+c}=2017\)

8 tháng 1 2017

P=2017

AH
Akai Haruma
Giáo viên
13 tháng 1 2017

Lời giải:

ĐK\(\Rightarrow (ax+by+cz)^2=0\Rightarrow 2(axby+axcz+bycz)=-(a^2x^2+b^2y^2+c^2z^2)\)

Ta có:

\(P=\frac{bc(y^2+z^2)+ca(z^2+x^2)+ab(x^2+y^2)-2(bcyz+caxz+abxy)}{ax^2+by^2+cz^2}\)

\(\Leftrightarrow P=\frac{bc(y^2+z^2)+ca(z^2+x^2)+ab(x^2+y^2)+(a^2x^2+b^2y^2+c^2z^2)}{ax^2+by^2+cz^2}\)

\(\Leftrightarrow P=\frac{(ax^2+by^2+cz^2)(a+b+c)}{ax^2+by^2+cz^2}=a+b+c\)

13 tháng 1 2017

giups thì giúp cho trót, giải vậy ko hiểu nổi

6 tháng 6 2018
https://i.imgur.com/iHrKonZ.png
24 tháng 10 2017

https://l.facebook.com/l.php?u=https%3A%2F%2Fdiendan.hocmai.vn%2Fthreads%2Flai-mot-bai-hoi-bi-kho-ne.226600%2F&h=ATPqu0VSzda9HN6swPmBXeYI_mLVFweVVBz72hMQdgv8WnX0mStwGwBOxPLOstENmMST5KDKsbNuoFCvtOGM2CoqQpz94ahFl9MGizb0_iA8MRBBsDChfE7x3A22qDBUSKGjOjCJFPZu

24 tháng 10 2017

2, (x,y,z)=(1,2,3)

19 tháng 10 2020

Bạn chắc đề đúng chứ?

Theo Maple, nếu không có điều kiện gì thêm giữa x, y, z thì không có giá trị chính xác cho biểu thức T.

14 tháng 12 2016

x^20+(x+1)^11=2016^y=?

26 tháng 12 2017

Từ giả thiết ta có: \(ax+by+cz=0\Rightarrow a^2x^2+b^2y^2+c^2z^2=-2\left(axby+bycz+axcz\right)\)

Ta biến đổi mẫu của biểu thức A: 

\(bc\left(y^2-2yz+z^2\right)+ac\left(x^2-2xz+z^2\right)+ab\left(x^2-2xy+y^2\right)\)

\(=bcy^2+bcz^2+acx^2+acz^2+abx^2+aby^2-2\left(bycz+axcz+axby\right)\)

\(=bcy^2+bcz^2+acx^2+acz^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2\)

\(=\left(bcz^2+abx^2+b^2y^2\right)+\left(bcy^2+acx^2+c^2z^2\right)+\left(acz^2+aby^2+a^2x^2\right)\)

\(=b\left(cz^2+ax^2+by^2\right)+c\left(by^2+ax^2+cz^2\right)+a\left(cz^2+by^2+ax^2\right)\)

\(=\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)\)

Vậy  \(A=\frac{ax^2+by^2+cz^2}{\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)}=\frac{1}{a+b+c}\)