Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(a,b,c\)có vai trò như nhau nên ta giả sử \(a\ge b\ge c\).
\(3=a+b+c\le a+a+a\Rightarrow a\ge1\).
\(a^2+b^2+c^2=5\Rightarrow a^2\le5\Rightarrow a\in\left\{1,2\right\}\).
Với \(a=2\): \(\hept{\begin{cases}b+c=1\\b^2+c^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\c=0\end{cases}}\).
Với \(a=1\Rightarrow b=c=1\)thử vào phương trình \(a^2+b^2+c^2=5\)không thỏa mãn.
Vậy \(A=\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)=\left(2^2+2\right)\left(1^2+2\right)\left(0^2+2\right)=36=6^2\)là bình phương của một số nguyên.
khó quá nha bn
mk mới chỉ hok lớp 7 thôi
xin lỡi nha
mk tin sẽ có nguoi tra lới cau hoi của bn
hok tot >_<
Ta có: \(a^2+b^2\ge2ab\forall a,b\Rightarrow\frac{1}{4-ab}\le\frac{2}{8-a^2-b^2}\)
Theo BĐT C-S: \(\frac{2}{8-a^2-b^2}\le\frac{1}{2}\left(\frac{1}{4-a^2}+\frac{1}{4-b^2}\right)\)
Do đó: \(\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ca}\le\frac{1}{4-a^2}+\frac{1}{4-b^2}+\frac{1}{4-c^2}\)
Ta có đánh giá sau: \(\frac{1}{4-a^2}\le\frac{a^4+5}{18}\Leftrightarrow\left(a^2-1\right)^2\left(a^2-2\right)\le0\) (Đúng)
Thiết lập các BĐT tương tự rồi cộng theo vế ta có:
\(\frac{1}{4-a^2}+\frac{1}{4-b^2}+\frac{1}{4-c^2}\le\frac{a^4+5}{18}+\frac{b^4+5}{18}+\frac{c^4+5}{18}=1\)(ĐPCM)
Đẳng thức xảy ra khi \(a=b=c=1\)
Cách khác dùng Schur như sau :)
BĐT cần chứng minh tương đương với:
\(16+3abc\left(a+b+c\right)\ge a^2b^2c^2+8\left(ab+bc+ca\right)\)
Mà \(1\ge a^2b^2c^2\). Mặt khác theo BĐT Schur ta có:
\(\left(a^3+b^3+c^3+3abc\right)\left(a+b+c\right)\ge\)
\(\ge\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\left(a+b+c\right)\)
\(\Leftrightarrow3+3abc\left(a+b+c\right)\ge2\left(a^2b^2+b^2c^2+c^2a^2\right)+2abc\left(a+b+c\right)\)
\(=\left(ad+bc\right)^2+\left(bc+ca\right)^2+\left(ca+ab\right)^2\)
BĐT sẽ được c/m xong nếu ta chỉ ra:
\(\left(ab+bc\right)^2+\left(bc+ca\right)^2+\left(ca+ab\right)^2+12\ge8\left(ab+bc+ac\right)\)
Đúng theo BĐT Cô-si
Dấu đẳng thức xảy ra khi \(a=b=c=1\)
Bổ xung đề a,b,c dương
1/ Chứng minh a < 1
Ta có: \(\left(a-1\right)\left(b-1\right)+\left(b-1\right)\left(c-1\right)+\left(c-1\right)\left(a-1\right)\)
\(=ab+bc+ca-2\left(a+b+c\right)+3=9-2.6+3=0\)
Nếu \(1\le a< b< c\) thì \(\left(a-1\right)\left(b-1\right)+\left(b-1\right)\left(c-1\right)+\left(c-1\right)\left(a-1\right)>0\)(mâu thuẫn)
\(\Rightarrow a< 1\)
Chứng minh b > 1
Giả sử \(a< b\le1\Rightarrow ab< 1\)
Ta có: \(9=ab+c\left(a+b\right)< 1+c\left(a+b\right)\)
\(\Rightarrow c\left(a+b\right)>8\)
Ta có: \(\frac{c}{2}+\left(a+b\right)\ge2\sqrt{\frac{c}{2}.\left(a+b\right)}>2\sqrt{\frac{8}{2}}=4\)
Ta có: \(\hept{\begin{cases}a+b+c=6\\a+b+\frac{c}{2}>4\end{cases}}\)
\(\Rightarrow6-c+\frac{c}{2}>4\)
\(\Rightarrow c< 4\)
\(\Rightarrow a+b>2\)(trái giải thuyết)
\(\Rightarrow b>1\)
Tương tự làm phần còn lại nhé.
tui thấy cách cho THCS r` cho a,b,c la so thuc thoa man : a<b<c ; a+b+c=6 ; ab+bc+ac=9 . chung minh rang : 0<a<1<b<3<c<4? | Yahoo Hỏi & Đáp
\(a+b+c=2020\Rightarrow\frac{1}{a+b+c}=\frac{1}{2020}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(b+c\right)+a\left(ab+ac\right)+abc-abc=0\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(b+c\right)+a^2\left(b+c\right)=0\)
\(\Leftrightarrow\left(ab+bc+ac+a^2\right)\left(b+c\right)=0\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Nếu a + b = 0 thì c = 2020
Nếu b + c = 0 thì a = 2020
Nếu a + c = 0 thì b = 2020
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2020}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)
\(\Rightarrow\left(a+b+c\right)\left(ab+ac+bc\right)=abc\)
\(\Rightarrow a^2b+a^2c+abc+ab^2+abc+b^2c+abc+ac^2+bc^2=abc\)
\(\Rightarrow...\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(TH1:a=-b\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a}-\frac{1}{a}+\frac{1}{c}=\frac{1}{c}\)
Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2020}\Rightarrow\frac{1}{c}=\frac{1}{2020}\Leftrightarrow c=2020\)
Các trường hợp kia tương tự
Câu hỏi của hanhungquan - Toán lớp 8 - Học toán với OnlineMath tương tự
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2019}\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{2019}\Leftrightarrow2019\left(ab+bc+ca\right)=abc\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)-abc=0\)
\(\Leftrightarrow\left(ab+bc\right)\left(a+b+c\right)+ca\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow b\left(a+c\right)\left(a+b+c\right)+ca\left(a+c\right)+abc-abc=0\)
\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ca\right)=0\)
\(\Leftrightarrow\left(a+c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\)
Mà \(a+b+c=2019\)
\(\Rightarrow a=2019\)hoặc \(b=2019\)hoặc \(c=2019\)
Ta có: \(a+b+c=ab+bc+ca\)
\(\Rightarrow a+b+c-ab-bc-ca=0\)
\(\Rightarrow a+b+c-ab-bc-ca+1-1=0\)
\(\Rightarrow a+b+c-ab-bc-ca+abc-1=0\)
\(\Rightarrow a\left(1-b\right)-\left(1-b\right)+c\left(1-b\right)-ca\left(1-b\right)=0\)
\(\Rightarrow\left(1-b\right)\left(a-1+c-ca\right)=0\)
\(\Rightarrow\left(1-b\right)\left[a\left(1-c\right)-\left(1-c\right)\right]=0\)
\(\Rightarrow\left(1-b\right)\left(1-c\right)\left(a-1\right)=0\)
=> 1 - b = 0 hoặc 1 - c = 0 hoặc a - 1 = 0
=> b = 1 c = 1 a = 1
Vậy trong các số a, b, c có ít nhất một số bằng 1