Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Thay m = 2 ta được \(\left\{{}\begin{matrix}2x+y=1\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
b, \(\Leftrightarrow\left\{{}\begin{matrix}3x=3m-3\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-1\\y=m-3\end{matrix}\right.\)
Ta có : \(x^2+y^2=m^2-2m+1+m^2-6m+9=2m^2-8m+10\)
\(=2\left(m^2-4m+4-4\right)+10=2\left(m-2\right)^2+2\ge2\forall m\)
Dấu''='' xảy ra khi m =2
Vậy ...
Hệ pt \(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+\left(m-1\right)y=2\left(1\right)\\\left(m+1\right)x-y=m+1\left(2\right)\end{cases}}\)
Nếu \(m+1=0\Rightarrow m=-1\Rightarrow\hept{\begin{cases}-2y=2\\-y=0\end{cases}\left(ktm\right)}\)
Nếu \(m+1\ne0\Rightarrow m^2y=m+1\Rightarrow y=\frac{m+1}{m^2}\Rightarrow x=2-\left(m-1\right)y\)
\(\Rightarrow x=2-\frac{\left(m-1\right)\left(m+1\right)}{m^2}=\frac{m^2+1}{m^2}\)
Yêu cầu bài toán \(\Leftrightarrow\frac{m^2+1}{m^2}>\frac{m+1}{m^2}\Rightarrow\frac{m^2-m}{m^2}>0\Rightarrow m^2-m>0\Rightarrow\orbr{\begin{cases}m< 0\\m>1\end{cases}}\)
Vậy với \(\orbr{\begin{cases}m< 0\\m< 1\end{cases};m\ne-1}\)thì .....