Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Khi $m=1$ thì HPT trở thành:
\(\left\{\begin{matrix} x-2y=-1\\ 2x+y=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x-4y=-2\\ 2x+y=2\end{matrix}\right.\)
\(\Rightarrow (2x+y)-(2x-4y)=2-(-2)\)
\(\Leftrightarrow 5y=4\Rightarrow y=\frac{4}{5}\)
\(x=\frac{2-y}{2}=\frac{2-\frac{4}{5}}{2}=\frac{3}{5}\)
Vậy ...........
b)
HPT \(\Leftrightarrow \left\{\begin{matrix} mx-2y=m-2\\ y=m+1-2x\end{matrix}\right.\Rightarrow mx-2(m+1-2x)=m-2\)
\(\Leftrightarrow x(m+4)=3m(*)\)
Để HPT ban đầu có bộ nghiệm (x,y) duy nhất thì PT $(*)$ phải có nghiệm $x$ duy nhất. Điều này xảy ra khi $m+4\neq 0$ hay $m\neq -4$
Bài 2:
a)
Khi $m=2$ thì hệ trở thành:
\(\left\{\begin{matrix}
x+2y=1\\
2x+y=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
2x+4y=2\\
2x+y=1\end{matrix}\right.\)
\(\Rightarrow (2x+4y)-(2x+y)=2-1\)
\(\Leftrightarrow 3y=1\Rightarrow y=\frac{1}{3}\)
Khi đó: \(x=1-2y=1-2.\frac{1}{3}=\frac{1}{3}\)
Vậy HPT có bộ nghiệm duy nhất $(x,y)=(\frac{1}{3}, \frac{1}{3})$
b)
HPT \(\Leftrightarrow \left\{\begin{matrix} x=1-my\\ mx+y=1\end{matrix}\right.\Rightarrow m(1-my)+y=1\)
\(\Leftrightarrow y(1-m^2)=1-m(*)\)
Để HPT ban đầu có nghiệm duy nhất thì PT $(*)$ cũng phải có nghiệm duy nhất. Điều này xảy ra khi \(1-m^2\neq 0\Leftrightarrow m\neq \pm 1\)
Khi đó:
\(y=\frac{1-m}{1-m^2}=\frac{1}{1+m}\)
\(x=1-my=1-\frac{m}{m+1}=\frac{1}{m+1}\)
Vậy HPT có nghiệm \((x,y)=(\frac{1}{m+1}, \frac{1}{m+1})\)
Để \(x,y>0\Leftrightarrow \frac{1}{m+1}>0\Leftrightarrow m>-1\)
Kết hợp những điều vừa tìm được suy ra $m>-1$ và $m\neq 1$ thì thỏa mãn.
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
x=2y+3-m\\
2x+y=3(m+2)\end{matrix}\right.\)
\(\Rightarrow 2(2y+3-m)+y=3(m+2)\)
\(\Leftrightarrow y=m\)
\(\Rightarrow x=2y+3-m=2m+3-m=m+3\)
Vậy HPT có nghiệm $(x,y)=(m+3,m)$
\(\Rightarrow S=x^2+y^2=(m+3)^2+m^2=2m^2+6m+9\)
\(=2(m+\frac{3}{2})^2+\frac{9}{2}\geq \frac{9}{2}\)
Vậy \(S_{\min}=\frac{9}{2}\Leftrightarrow (m+\frac{3}{2})^2=0\Leftrightarrow m=-\frac{3}{2}\)
Bai1:
\(-2x+\frac{3}{5}\le\frac{3\left(2x-7\right)}{3}\Leftrightarrow-10x+3\le5\left(2x-7\right)\Leftrightarrow-10x+3\le10x-35\)
\(\Leftrightarrow\left(10+10\right)x\ge3+35\Rightarrow x\ge\frac{38}{20}=\frac{19}{10}\)
Bài
\(\left\{\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\Leftrightarrow\left(I\right)\left\{\begin{matrix}x>1-m\\x< 3m-2\end{matrix}\right.\)
Hệ (I) có nghiệm cần m thỏa mãn:
\(1-m< 3m-2\Leftrightarrow1+2< 3m+m\Rightarrow m>\frac{3}{2}\)
Kết luận: để hệ có nghiệm cần: m>3/2
\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\left(1\right)\\2x-y=m+5\left(2\right)\end{matrix}\right.\)
a) Từ (2) => y=2x-m-5, thay vào (1) ta có:
\(\left(m-1\right)x-m\left(2x-m-5\right)=3m-1\)
=>\(\left(m-1\right)x-2mx+m^2=5m-3m+1=0\)
=> \(\left(m-1-2m\right)x+m^2+2m+1=0\)
<=> \(\left(-m-1\right)x+\left(m+1\right)^2=0\)
<=> \(\left(m+1\right)x=\left(m+1\right)^2\) (*)
+Nếu m=-1 => pt (*) tương đương:
0x=0 => pt (*) vô số nghiệm x => y = 2x+1-5 = 2x-4
=> hệ pt có vô số nghiệm (x;2x-4)
+ Nếu m\(\ne\)1 => pt(*) có nghiệm duy nhất x=\(\dfrac{\left(m+1\right)^2}{m+1}=m+1\)
=> y=2.(m+1)-m-5 = 2m+2-m-5=m-3
=> hpt có nghiệm duy nhất (x;y) =(m+1;m-3)
Vậy với m=-1, hệ pt có vô số nghiệm (x;2x-4)
Với m\(\ne\)-1 hệ pt có nghiệm duy nhất (x;y)=(m+1;m-3)
b) Để 2 đường thẳng của hệ cắt nhau tại 1 điểm nằm trong góc phần tư thức IV của hệ tọa độ Oxy thì hệ pt có nghiệm duy nhất x>0, y<0
=> \(\left\{{}\begin{matrix}m+1>0\\m-3< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m>-1\\m< 3\end{matrix}\right.\)
Mà m\(\in\)Z => m\(\in\){0;1;2}
c) Với m≠ -1 thì hệ có nghiệm duy nhất (x;y) = (m+1;m-3)
P=\(x^2+y^2=\left(m+1\right)^2+\left(m-3\right)^2\)
P=\(m^2+2m+1+m^1-6m+9\)
\(P=2m^2-4m+10=2\left(m^2-2m+5\right)=2\left(m^2-2m+1\right)+8=2\left(m-1\right)^2+8\)
Vì (m-1)2 \(\ge\)0 với mọi m ≠-1
=> \(2\left(m-1\right)^2\ge0\)<=> \(2\left(m-1\right)^2+8\ge8\)
=> P\(\ge\) 8
=> P đạt giá trị nhỏ nhất =8 khi m-1=0 <=> m=1