K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
22 tháng 11 2021

a) Với \(m=0\): hệ phương trình đã cho tương đương với: 

\(\hept{\begin{cases}4y=10\\x=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=\frac{5}{2}\end{cases}}\)

Với \(m\ne0\): hệ có nghiệm duy nhất khi: 

\(\frac{m}{1}\ne\frac{4}{m}\Leftrightarrow m\ne\pm2\)

Hệ có vô số nghiệm khi: 

\(\frac{m}{1}=\frac{4}{m}=\frac{10-m}{4}\Leftrightarrow m=2\)

Hệ vô nghiệm khi: 

\(\frac{m}{1}=\frac{4}{m}\ne\frac{10-m}{4}\Leftrightarrow m=-2\).

b) với \(m\ne\pm2\)hệ có nghiệm duy nhất. 

\(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(4-my\right)+4y=10-m\\x=4-my\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(4-m^2\right)y=10-5m\\x=4-my\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{8-m}{m+2}\\y=\frac{5}{m+2}\end{cases}}\)

\(\hept{\begin{cases}\frac{8-m}{m+2}>0\\\frac{5}{m+2}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}8-m>0\\m+2>0\end{cases}}\Leftrightarrow-2< m< 8\)

c) \(\hept{\begin{cases}\frac{8-m}{m+2}=\frac{10-m-2}{m+2}=\frac{10}{m+2}-1\inℤ\\\frac{5}{m+2}\inℤ\end{cases}}\Leftrightarrow\frac{5}{m+2}\inℤ\)

\(\frac{5}{m+2}=t\inℤ\Rightarrow m=\frac{5}{t}-2\)

Để \(x,y\)dương thì \(-2< \frac{5}{t}-2< 8\Leftrightarrow0< \frac{5}{t}< 10\Rightarrow t\ge1\)

Vậy \(m=\frac{5}{t}-2\)với \(t\)nguyên dương thì thỏa mãn ycbt. 

10 tháng 1 2018

Lần sau bạn nên ghi ra hệ đàng hoàng nhé, nhìn như thế khó đọc lắm.

\(\left\{{}\begin{cases}x+2y=2\\mx-y=m\end{cases}}\)

14 tháng 1 2018

\(\left\{{}\begin{matrix}x+2y=2\\mx-y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-2y\\m\left(2-2y\right)-y-m=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-2y\\2m-2my-y-m=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-2y\\\left(-2m-1\right)y+m=0\left(.\right)\end{matrix}\right.\)

a, Hệ pt có 1 nghiệm duy nhất khi pt (.) có nghiệm duy nhất

\(\Rightarrow-2m-1\ne0\Leftrightarrow-2m\ne1\Leftrightarrow m\ne\dfrac{-1}{2}\)

Hệ pt có vô số nghiệm khi pt (.) có vô số nghiệm

\(\Rightarrow\left\{{}\begin{matrix}-2m-1=0\\m=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{-1}{2}\\m=0\end{matrix}\right.\)(vô lí)

Hệ pt vô nghiệm khi pt (.) vô nghiệm

\(\Rightarrow\left\{{}\begin{matrix}-2m-1=0\\m\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{-1}{2}\left(thoảman\right)\\m\ne0\end{matrix}\right.\)

\(\Rightarrow m=\dfrac{-1}{2}\)

b, Với m \(\ne\dfrac{-1}{2}\), ta có:

\(\left\{{}\begin{matrix}x=2-2y\\y=\dfrac{-m}{-2m-1}=\dfrac{2}{2m+1}\end{matrix}\right.\)