Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)
Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:
\(t^2-3m.t+m=0\) (1)
Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:
TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)
\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)
\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)
TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)
\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)
\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)
Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)
2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)
Ko tồn tại m thỏa mãn
Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?
- Từ PT ( II ) ta có : \(xy\left(x+y\right)=2xy=4m^2-2m\)
\(\Rightarrow xy=2m^2-m\)
- Hệ PT trên có nghiệm là nghiệm của PT :
\(x^2-2x+2m^2-m=0\) ( I )
Có : \(\Delta^,=b^{,2}-ac=1-\left(2m^2-m\right)=-2m^2+m-1\)
- Để PT ( i ) có nghiệm \(\Leftrightarrow\Delta^,>0\)
\(\Leftrightarrow-2m^2+m-1>0\)
Vậy không tồn tại m để hệ phương trình có nghiệm .
Phương trình (i) có nghiệm $\Leftrightarrow \Delta\geq 0$ chứ không phải $>0$ bạn nhé.
Viết lại hệ \(\left\{{}\begin{matrix}2x+y=5\\-x+2y=a+5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\-2x+4y=2a+10\end{matrix}\right.\)
\(\Rightarrow5y=2a+15\Leftrightarrow y=\dfrac{2a+15}{5}\)
\(\Leftrightarrow x=2y-a-5=\dfrac{5-a}{5}\)
\(xy=\dfrac{5-a}{5}.\dfrac{2a+15}{5}=\dfrac{-2a^2-5a+75}{25}=\dfrac{-\left(a+\dfrac{5}{4}\right)^2+\dfrac{625}{8}}{25}\le\dfrac{25}{8}\)
\(max=\dfrac{25}{8}\Leftrightarrow a=-\dfrac{5}{4}\)
\(\left\{{}\begin{matrix}x+y=2m-1\left(1\right)\\x^2+y^2=m^2+2m-3\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left(x+y\right)^2-2xy=m^2+2m-3\)
\(\Leftrightarrow\left(2m-1\right)^2-m^2-2m+3=2xy\)
\(\Leftrightarrow2xy=3m^2-6m+4\)
\(P_{min}\Leftrightarrow3m^2-6m+4\left(min\right)\)
\(3\left(m^2-2m+\dfrac{4}{3}\right)=3\left(m^2-2m+1+\dfrac{1}{3}\right)=3\left[\left(m-1\right)^2+\dfrac{1}{3}\right]=3\left(m-1\right)^2+1\ge1\)
\("="\Leftrightarrow m=1\)
Đặt \(S=x+y\); \(P=xy\) \(\left(S^2\ge4P\right)\); HPT trở thành
\(\left\{{}\begin{matrix}S+P=m+2\\SP=m+1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}P=m+2-S\\\left(m+2-S\right)S=m+1\end{matrix}\right.\)
\(\Rightarrow S^2-S\left(m+2\right)+m+1=0\)
\(\Rightarrow\Delta=m^2\) \(\Rightarrow\left[{}\begin{matrix}S=1\\S=m+1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}S=1\\P=m+1\end{matrix}\right.\curlyvee\left\{{}\begin{matrix}S=m+1\\P=1\end{matrix}\right.\)
* Với \(\left\{{}\begin{matrix}S=1\\P=m+1\end{matrix}\right.\)\(\Rightarrow S^2\ge4P\Leftrightarrow1\ge4\left(m+1\right)\)\(\Leftrightarrow m\le\dfrac{-3}{4}\)
Vậy nên x,y là nghiệm của phương trình
\(X^2-X+m+1=0\) \(\Rightarrow\Delta_1=1-4\left(m+1\right)\)
* Với \(\left\{{}\begin{matrix}S=m+1\\P=1\end{matrix}\right.\)\(\Rightarrow S^2\ge4P\Leftrightarrow\left(m+1\right)^2\ge4\Leftrightarrow\left[{}\begin{matrix}m\le-3\\m\ge1\end{matrix}\right.\)
Vậy x,y là nghiệm của phương trình
\(Y^2-\left(m+1\right)Y+1=0\)\(\Rightarrow\Delta_2=\left(m+1\right)^2-4\)
Để HPT có nghiệm duy nhất
1)\(\Leftrightarrow\left\{{}\begin{matrix}\Delta_1=0\\\Delta_2< 0\end{matrix}\right.\)\(\Leftrightarrow m=\dfrac{-3}{4}\) thỏa mãn đk \(S^2\ge4P\)
2) \(\Leftrightarrow\left\{{}\begin{matrix}\Delta_2=0\\\Delta_1< 0\end{matrix}\right.\)\(\Leftrightarrow m=1\) thỏa mãn ĐK
3) \(\Leftrightarrow\left\{{}\begin{matrix}\Delta_1=0\\\Delta_2=0\end{matrix}\right.\)vô nghiệm
Vậy \(\left[{}\begin{matrix}m=\dfrac{-3}{4}\\m=1\end{matrix}\right.\) thì hệ có 1 nghiệm duy nhất