Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Với m=2 thì hpt trở thành:
x-2y=5
2x-y=7
<=>
2x-4y=10
2x-y=7
<=>
-3y=3
2x-y=7
<=>
y=-1
x=3
b)\(\int^{\left(m-1\right)x-my=3m-1}_{2x-y=m+5}\Leftrightarrow\int^{x=\frac{3m+my-1}{m-1}}_{\frac{6m+2my-2}{m-1}-y=m+5}\Leftrightarrow\int^{x=\frac{3m+my-1}{m-1}}_{m^2+2m+my+y+3=0}\)
*m2+2m+my+y+3=0
<=>y.(m+1)=-m2-2m-3
*Với m=-1 =>PT vô nghiệm
*Với m khác -1 =>PT có nghiệm là: \(y=\frac{-m^2-2m-3}{m+1}=-m-1-\frac{2}{m+1}\)
bí tiếp
a)Với y=1 ta có hpt:
\(\int^{2x+3=3+m}_{x+2=m}\Leftrightarrow\int^{2x=m}_{x+2=2x}\Leftrightarrow\int^{2.2=m}_{x=2}\Leftrightarrow\int^{m=4}_{x=2}\)
Vậy nghiệm của hpt là (2;1) khi m=4
b)đợi suy nghĩ
a) Thay m=2 vào hpt, ta có \(\hept{\begin{cases}-x+2y=6\\6x-y=-4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=6x+4\\-x+12x+8=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}11x=-2\\y=6x+4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{11}\\y=\frac{32}{11}\end{cases}}\)
Vậy m=2 thì hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-2}{11};\frac{32}{11}\right)\)
b) Ta có \(\hept{\begin{cases}\left(m-3\right)x+2y=6\\y=3mx+4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3mx+4\left(1\right)\\mx-3x+6mx+8=6\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\left(7m-3\right)x=-2\)
Hpt có nghiệm duy nhất \(\Leftrightarrow\)pt (2) có nghiệm duy nhất \(\Leftrightarrow7m-3\ne0\Leftrightarrow m\ne\frac{3}{7}\)(*)
Khi đó \(\left(2\right)\Leftrightarrow x=\frac{-2}{7m-3}\). Thay vào (1) \(\Leftrightarrow y=\frac{-6m}{7m-3}+4=\frac{-6m+28m-12}{7m-3}=\frac{22m-12}{7m-3}\)
Vậy \(m\ne\frac{3}{7}\)thì hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-2}{7m-3};\frac{22m-12}{7m-3}\right)\)
Vì 2x+y>0\(\Rightarrow\frac{-4}{7m-3}+\frac{22m-12}{7m-3}>0\)
\(\Leftrightarrow\frac{22m-16}{7m-3}>0\)
\(\Leftrightarrow\orbr{\begin{cases}22m-16>0;7m-3>0\\22m-16< 0;7m-3< 0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m>\frac{8}{11};m>\frac{3}{7}\\m< \frac{8}{11};m< \frac{3}{7}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m>\frac{8}{11}\\m< \frac{3}{7}\end{cases}}\)
Kết hợp vs đk (*) \(\Rightarrow\orbr{\begin{cases}m>\frac{8}{11}\\m< \frac{3}{7}\end{cases}}\)thì 2x+y>0
\(Đkxđ:\hept{\begin{cases}x\ge2\\y\ge2\end{cases}}\)
Ta thấy các vế đều \(\ge0\)nên ta bình phương các vế ta được:
\(\Leftrightarrow\hept{\begin{cases}x+y+3+2\sqrt{\left(x+5\right)\left(y-2\right)}=49\\x+y+3+2\sqrt{\left(x-2\right)\left(y+5\right)}=49\end{cases}}\)
Trừ từng vế ta được:
\(\sqrt{\left(x+5\right)\left(y-2\right)}=\sqrt{\left(x-2\right)\left(y+5\right)}\)
\(\Leftrightarrow\left(x+5\right)\left(y-2\right)=\left(x-2\right)\left(y+5\right)\)
\(\Leftrightarrow xy+5y-2x-10=xy+5x-2y-10\)
\(\Leftrightarrow x=y\)
Thay vào một trong hai pt trên ta được:
\(2x+3+2\sqrt{x^2+3x-10}=49\)
\(\Leftrightarrow\sqrt{x^2+3x-10}=23-x\Leftrightarrow\hept{\begin{cases}x\le23\\x^2+3x-10=\left(23-x\right)^2\end{cases}}\Leftrightarrow x=11\)
Vậy hpt có nghiệm là: \(x=y=11\)
Phương trình được viết lại:
\(4x^2+4x+1=4y^4+4y^3+y^2+3y^2+4y+1\)
\(\Leftrightarrow4x^2+4x+1=\left(2y^2+y\right)^2+3y^2+4y+1\)
\(\Leftrightarrow\left(2x+1\right)^2=\left(2y^2+y+1\right)^2+2y-y^2\)
Nếu: \(y=-1\)và \(2y-y^2< 0\Rightarrow3y^2+4y+1>0\)
\(\Rightarrow\left(2y^2+y\right)^2< \left(2x+1\right)^2< \left(2y^2+y+1\right)^2\)
Ta thấy vô lí vì \(\left(2y^2+y\right)^2;\left(2y^2+y+1\right)\)là 2 số chính phương liên tiếp.
Vì thế nên \(y\)nhận 1 trong những giá trị: \(-1;0;1;2\)
- \(y=-1\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
- \(y=0\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
- \(y=1\Rightarrow\)Không tồn tại \(x\)
- \(y=2\Rightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}\)
Vậy các nghiệm nguyên của phương trình là: \(\left(x,y\right)\in\left\{\left(0;-1\right),\left(-1;-1\right);\left(0;0\right);\left(-1;0\right);\left(5;2\right);\left(-6;2\right)\right\}\)
từ ptt 2
=>x=4-my
thay vào pt 1 ta đc:
m(4-my)+4y=10-m
=>4m-m^2y+4y=10-m
=> m^2y-4y+10-5m=0
no duy nhất x,y nên pt trên cs 1 no
=> đenta phẩy =0
=> 4-y(-5m)=0
5+5ym=0
=>ym=0
=>y=0
vậy đpcm
ak nhầm,
m^2y-4y+10-5m=0
=> denta =25-4y(-4y+10)=0
=>25+16y^2-40y=0
=>16y^2-40y+ 25=0
y=1.25
=> đpcm
vô lý
Đáp án D