Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Do MN song song với AB nên MN vuông góc với AC
Tam giác AMC có 2 đường cao AH, MN suy ra N là trực tâm. Do đó CN vuông góc với AM.
Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))
a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F co
góc B chung
=>ΔBDA đồng dạng vói ΔBFC
b: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
=>ΔAFE đồng dạng vói ΔACB
c: Xét ΔAEH vuông tại E và ΔADC vuông tại D có
góc EAH chung
=>ΔAEH đồng dạng vói ΔADC
=>AD*AH=AE*AC
Xét ΔCEH vuông tại E và ΔCFA vuông tại F có
góc ECH chung
=>ΔCEH đồng dạng vói ΔCFA
=>CH*CF=CE*CA
=>AH*AD+CH*CF=CA^2
a: Xét ΔABH vuông tại H và ΔACB vuông tại B có
góc BAH chung
Do đó: ΔABH đồng dạng với ΔACB
b: ΔABC vuông tại B
=>AC^2=AB^2+BC^2=100
=>AC=10cm
ΔBAC vuông tại B có BH là đường cao
nên AH*AC=AB^2 và BH*AC=BA*BC
=>AH*10=36 và BH*10=6*8=48
=>HA=3,6cm; BH=4,8cm
c: Xét ΔHBC có HE/HB=HK/HC
nên EK//BC
=>góc HEK=góc HBC=góc HAB
Xét ΔHEK vuông tại H và ΔHAB vuông tại H có
góc HEK=góc HAB
Do đó: ΔHEk đồng dạng với ΔHAB
=>HE/HA=EK/AB
=>HE*AB=EK*HA