K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 5 2021

1.

\(SA\perp\left(ABC\right)\Rightarrow AC\) là hình chiếu vuông góc của SA lên (ABC)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC là (ABC)

\(AC=\sqrt{AB^2+BC^2}=a\sqrt{5}\)

\(\Rightarrow tan\widehat{SCA}=\dfrac{SA}{AC}=\dfrac{\sqrt{15}}{5}\Rightarrow\widehat{SCA}\approx37^045'\)

b.

Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

Mà \(\left\{{}\begin{matrix}BC=\left(SBC\right)\cap\left(ABC\right)\\SB=\left(SBC\right)\cap\left(SAB\right)\\AB=\left(ABC\right)\cap\left(SAB\right)\end{matrix}\right.\) \(\Rightarrow\widehat{SBA}\) là góc giữa (SBC) và (ABC)

\(tan\widehat{SBA}=\dfrac{SA}{AB}=\sqrt{3}\Rightarrow\widehat{SBA}=60^0\)

c.

Trong mp (SAB), từ A kẻ \(AH\perp SB\)

Mà \(BC\perp\left(SAB\right)\Rightarrow BC\perp AH\)

\(\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH=d\left(A;\left(SBC\right)\right)\)

Áp dụng hệ thức lượng:

\(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}\Rightarrow AH=\dfrac{SA.AB}{\sqrt{SA^2+AB^2}}=\dfrac{a\sqrt{3}}{2}\)

NV
6 tháng 5 2021

2.

\(SA\perp\left(ABCD\right)\Rightarrow AB\) là hình chiếu vuông góc của SB lên (ABCD)

\(\Rightarrow\widehat{SBA}\) là góc giữa SB là (ABCD)

\(tan\widehat{SBA}=\dfrac{SA}{AB}=3\Rightarrow\widehat{SBA}\approx71^034'\)

b.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

Mà \(\left\{{}\begin{matrix}BC=\left(SBC\right)\cap\left(ABCD\right)\\SB=\left(SAB\right)\cap\left(SBC\right)\\AB=\left(SAB\right)\cap\left(ABCD\right)\end{matrix}\right.\)

\(\Rightarrow\widehat{SBA}\) là góc giữa (SBC) và (ABCD) (đã tính ở câu a)

c.

Từ A kẻ \(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\)

\(\Rightarrow AH=d\left(A;\left(SBC\right)\right)\)

\(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}\Rightarrow AH=\dfrac{SA.AB}{\sqrt{SA^2+AB^2}}=\dfrac{3a\sqrt{10}}{10}\)

a: (SB;(ABC))=(BS;BA)=góc SBA

BA^2+BC^2=AC^2

=>2*BA^2=AC^2

=>AB=BC=a

tan SBA=SA/SB=căn 3

=>góc SBA=60 độ

d: (SB;(BAC))=(BS;BA)=góc SBA=60 độ

e:

CB vuông góc AB

CB vuông góc SA

=>CB vuông góc (SBA)

=>(SC;(SBA))=(SC;SB)=góc BSC

SB=căn SA^2+AB^2=2a

SC=căn SA^2+AC^2=a*căn 5

Vì SB^2+BC^2=SC^2

nên ΔSBC vuông tại B

sin BSC=BC/SC=a/a*căn 5=1/căn 5

=>góc BSC\(\simeq27^0\)

15 tháng 4 2021

Phần góc giữa 2 mặt phẳng tui chưa học đến nên chưa làm được đoạn cuối phần b, bạn thông cảm nha!

undefined

16 tháng 4 2021

okee cảm ơn bạn

 

a: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

=>(SBD) vuông góc (SAC)

b: BC vuông góc AB

BC vuông góc SA
=>BC vuông góc (SAB)

=>BC vuông góc AK

mà AK vuông góc SB

nên AK vuông góc (SBC)

 

a: (SB;(ABC))=(SB;BA)=góc SBA

\(\tan SBA=\dfrac{SA}{AB}=\sqrt{6}\)

=>góc SBA=68 độ

b: (SA;(SBC))=(SA;SB)=góc ASB

tan ASB=AB/SA=1/căn 6

=>góc ASB=22 độ

NV
20 tháng 4 2023

Trong mp (SAC), từ A kẻ \(AD\perp SC\) (D thuộc SC) (1)

Trong mp (ABC), qua A kẻ đường thẳng vuông góc AC cắt BC kéo dài tại E

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp AE\\AE\perp AC\end{matrix}\right.\) \(\Rightarrow AE\perp\left(SAC\right)\Rightarrow\left\{{}\begin{matrix}AE\perp AE\\AE\perp SC\left(2\right)\end{matrix}\right.\) 

(1);(2) \(\Rightarrow SC\perp\left(ADE\right)\)

Mà \(SC=\left(SAC\right)\cap\left(SBC\right)\Rightarrow\widehat{ADE}\) là góc giữa (SAC) và (SBC)

\(AC=\sqrt{AB^2+BC^2}=2a\)

Hệ thức lượng: \(\dfrac{1}{AD^2}=\dfrac{1}{SA^2}+\dfrac{1}{AC^2}\Rightarrow AD=\dfrac{2a\sqrt{33}}{11}\)

\(\dfrac{1}{AB^2}=\dfrac{1}{AC^2}+\dfrac{1}{AE^2}\Rightarrow AE=\dfrac{AB.AC}{\sqrt{AC^2-AB^2}}=\dfrac{2a\sqrt{3}}{3}\)

\(\Rightarrow tan\widehat{ADE}=\dfrac{AE}{AD}=...\)

NV
20 tháng 4 2023

loading...