Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Phương trình hoành độ giao điểm của (P) và (d'):
\(-x^2=mx-4\Leftrightarrow x^2+mx-4=0\left(1\right)\)
\(a=1;b=m;c=-4\)
\(\Delta=b^2-4ac=m^2-4.\left(1\right).\left(-4\right)=m^2+16>0\)
Vì \(\Delta>0\) nên (P) và (d) luôn cắt nhau tại hai điểm phân biệt có hoành độ x1, x2.
Theo định lí Viete cho phương trình (1) ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{m}{1}=-m\\x_1x_2=\dfrac{c}{a}=\dfrac{-4}{1}=-4\end{matrix}\right.\)
Ta có: \(\left(x_1-x_2\right)^2-\left(x_1+x_2\right)=18\)
\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=18\)
\(\Rightarrow\left(-m\right)^2-2.\left(-4\right)-\left(-m\right)-18=0\)
\(\Leftrightarrow m^2+m-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-3\end{matrix}\right.\)
Vậy m=4 hay m=-3.
a:
b: PTHĐGĐ là:
x^2+2x-3=0
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
Khi x=-3 thì y=9
Khi x=1 thì y=1
c: PTHĐGĐ là:
x^2-2mx+4=0
Δ=(-2m)^2-4*1*4=4m^2-16
Để (P) cắt (d') tại 2 điểm pb thì 4m^2-16>0
=>m>2 hoặc m<-2
5xA-xB=1 và xA+xB=2m
=>6xA=2m+1 và xB=2m-xA
=>xA=1/3m+1/6 và xB=2m-1/3m-1/6=5/3m-1/6
xA*xB=4
=>(1/3m+1/6)(5/3m-1/6)=4
=>5/9m^2-1/18m+5/18m-1/36-4=0
=>m=5/2(nhận) hoặc m=-29/10(nhận)
a:
b: Phương trình hoành độ giao điểm là:
\(x^2=2x-3m\)
=>\(x^2-2x+3m=0\)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot3m=-12m+4\)
Để (d) cắt (P) tại hai điểm phân biệt thì Δ>0
=>-12m+4>0
=>-12m>-4
=>\(m< \dfrac{1}{3}\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=3m\end{matrix}\right.\)
\(x_1\cdot x_2^2-x_2\left(3m+2x_1\right)=12\)
=>\(x_1\cdot x_2^2-x_2\left(x_1x_2+2x_1\right)=12\)
=>\(x_1\cdot x_2^2-x_1\cdot x_2^2-2x_1x_2=12\)
=>-2*3m=12
=>-6m=12
=>m=-2(nhận)