Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=1 và y=2 vào (d), ta được:
2m+1=2
hay \(m=\dfrac{1}{2}\)
Thay x=1 và y=2 vào (d), ta được:
2m+1=2
hay \(m=\dfrac{1}{2}\)
m Khác 1 ( h/s ố không qua O )
+ x =0 => y = m -1 A(0;m-1)
+y =0 => x =1-m B(1-m;0)
Áp dụng HTL trong tam gics AOB vuông tại O
\(\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\Leftrightarrow\frac{1}{\left(m-1\right)^2}+\frac{1}{\left(1-m\right)^2}=\frac{1}{\sqrt{2}^2}\)
Hay (m-1)2 =4 => /m -1/ = 2 => m =3 hoặc m =-1
** Sửa đề: $m\neq 0; m\neq -1$
Lời giải:
Gọi đths đã cho là $(d)$.
Gọi $A,B$ lần lượt là giao điểm của $(d)$với trục $Ox, Oy$.
Do $A\in Ox$ nên $y_A=0$
$A\in (d)\Rightarrow y_A=mx_A+x_A+1$
$\Leftrightarrow 0=x_A(m+1)+1$
$\Leftrightarrow x_A=\frac{-1}{m+1}$
Do $B\in Oy$ nên $x_B=0$
$y_B=mx_B+x_B+1=m.0+0+1=1$
Gọi $h$ là khoảng cách từ gốc tọa độ đến $(d)$.
Theo hệ thức lượng trong tam giác vuông:
$\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}$
$\Leftrightarrow \frac{1}{h^2}=\frac{1}{x_A^2}+\frac{1}{y_B^2}$
$\Leftrightarrow \frac{1}{h^2}=1+(m+1)^2$
Với $m\neq -1$ thì không tìm được min $1+\frac{1}{(m+1)^2}$, tức là không tìm được max h.
a: Thay x=1 và y=2 vào y=(m-1)x+4, ta được:
1(m-1)+4=2
=>m-1+4=2
=>m+3=2
=>m=-1
b:
(d): y=(m-1)x+4
=>(m-1)x-y+4=0
Khoảng cách từ O(0;0) đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-1\right)+0\cdot\left(-1\right)+4\right|}{\sqrt{\left(m-1\right)^2+1}}=\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}\)
Để d(O;(d))=2 thì \(\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}=2\)
=>\(\sqrt{\left(m-1\right)^2+1}=2\)
=>\(\left(m-1\right)^2+1=4\)
=>\(\left(m-1\right)^2=3\)
=>\(m-1=\pm\sqrt{3}\)
=>\(m=\pm\sqrt{3}+1\)
Đặt: d: y = ( m+1 ) x + 3
+) TH1: m = -1
=> d: y = 3
=> Khoảng cách của gốc tọa độ tới d là: 3 (1)
+) Th2: m khác -1.
Giao điểm của d với Ox là : A ( \(-\frac{3}{m+1};0\))
=> \(OA=\left|\frac{3}{m+1}\right|\)
Giao điểm của d với Oy là: \(B\left(0;3\right)\)
=> OB = 3.
Kẻ OH vuông với d tại H => AH là khoảng cách từ O tới d
Xét tam giác OAB vuông tại O. Có OH là đường cao:
=> \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{\left(m+1\right)^2}{9}+\frac{1}{9}>\frac{1}{9}\)vì m khác 1 => \(\left(m+1\right)^2>0\)
=> \(OH< 3\)
=> Khoảng cách từ gốc tọa độ đến d nhỏ hơn 3 (2)
Từ (1); (2) Khoảng cách từ O đến d có giá trị lớn nhất là 3 đạt tại m = -1.
len google bn oi